OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 14 — May. 10, 1998
  • pp: 2944–2952

Plastic modules for free-space optical interconnects

David T. Neilson and Eugen Schenfeld  »View Author Affiliations


Applied Optics, Vol. 37, Issue 14, pp. 2944-2952 (1998)
http://dx.doi.org/10.1364/AO.37.002944


View Full Text Article

Enhanced HTML    Acrobat PDF (599 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A combined optoelectronic and optomechanical packaging technique for the construction of snap-together free-space optical interconnect systems is described. The modules integrate relaying and routing functions by use of transparent optical molded plastic, which can achieve sufficient alignment precision that further adjustment is not required during system assembly. Methods to integrate the optoelectronic chips, such as vertical-cavity surface-emitting laser and receiver arrays with these plastic optical modules are described. Other chips can also be integrated to form optoelectronic multichip modules. These modules can also be designed to accommodate coupling to or from optical fiber arrays. A test-bed system to demonstrate the concept was assembled to a lower precision by use of conventional machining techniques.

© 1998 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects
(200.4880) Optics in computing : Optomechanics
(200.4960) Optics in computing : Parallel processing
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

History
Original Manuscript: September 5, 1997
Revised Manuscript: January 5, 1998
Published: May 10, 1998

Citation
David T. Neilson and Eugen Schenfeld, "Plastic modules for free-space optical interconnects," Appl. Opt. 37, 2944-2952 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-14-2944


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. B. McCormick, F. A. P. Tooley, J. L. Brubaker, J. M. Sasian, T. J. Cloonan, A. L. Lentine, R. L. Morrison, R. J. Crisci, S. L. Walker, S. J. Hinterlong, M. J. Herron, “Opto-mechanics of a free-space photonic switch: the components,” in Optomechanics and Dimensional Stability, R. A. Paquin, D. Vukobratovich, eds., Proc. SPIE1533, 97–114 (1991). [CrossRef]
  2. D. J. Reiley, J. M. Sasian, “Optical design of a free-space photonics switching system,” Appl. Opt. 36, 4497–4504 (1997). [CrossRef] [PubMed]
  3. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, D. J. Goodwill, D. Kabal, R. Iyer, Y. S. Liu, D. R. Rolston, H. Venditti, T. H. Szmanski, W. M. Robertson, M. R. Taghizadeh, “Optical, optomechanical, and optoelectronic design and operational testing of a multi-stage optical backplane demonstration system,” in Proceedings of the Third International Conference on Massively Parallel Processing Using Optical Interconnections, E. Schenfeld, A. Gottlieb, eds. (IEEE Computer Society, New York, 1996), pp. 306–312. [CrossRef]
  4. K. Hamanaka, “Integration of free-space interconnects using Selfoc lenses: image transmission properties,” Jpn. J. Appl. Phys. Part 1 31, 1656–1662 (1992). [CrossRef]
  5. K. Fasanella, T. J. Kim, D. T. Neilson, E. Schenfeld, “Modular optomechanical design of free-space optical interconnect system for massively parallel processing,” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 6–9.
  6. F. A. P. Tooley, A. Z. Shang, B. Roberton, “Alignment tolerant smart pixels,” in Digest of IEEE/LEOS 1996 Summer Topical Meetings: Advanced Applications of Lasers in Materials Processing; Broadband Optical Networks—Enabling Technologies and Applications; Smart Pixels; Optical MEMs and their Applications (Institute of Electrical and Electronics Engineers, New York, 1996), pp. vi + 78, 55–56.
  7. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996). [CrossRef]
  8. N. C. Craft, A. Y. Feldblum, “Optical interconnects based on arrays of surface-emitting lasers and lenslets,” Appl. Opt. 31, 1735–1739 (1992). [CrossRef] [PubMed]
  9. D. T. Neilson, C. P. Barrett, “Performance trade-offs for conventional lenses for free-space digital optics,” Appl. Opt. 35, 1240–1248 (1996). [CrossRef] [PubMed]
  10. S. Wakelin, K. K. Chau, M. Derstine, “Implementation of hybrid micro-optical beam combining unit, (MOBCU) with smart pixel transmitter array” in Optics in Computing, Vol. 8 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 252–254.
  11. D. J. Goodwill, H. S. Hinton, “Optical interconnect module extensible to 10,000 parallel channels for a smart-pixel optical backplane,” in Digest of IEEE/LEOS 1996 Summer Topical Meetings: Advanced Applications of Lasers in Materials Processing; Broadband Optical Networks—Enabling Technologies and Applications; Smart Pixels; Optical MEMs and their Applications (Institute of Electrical and Electronics Engineers, New York, 1996), pp. vi + 78, 61–62.
  12. G. J. Shevchuck, “Plastics: best supporting actors in fiber interconnection,” in Proceedings of LEOS’95: IEEE Lasers and Electro Optical Society Eighth Annual Meeting (Institute of Electrical and Electronics Engineers, New York, 1995), Vol. 1, pp. 230–231.
  13. M. E. Robertsson, P. Eriksen, B. Lindstrom, H.-C. Moll, J.-A. Engstrand, “Plastic optical connectors molded directly onto optical fibers and optical fiber ribbons,” in IEEE Proceedings of the Forty-Third Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 498–504.
  14. H. Yokosuka, Y. Tamaki, K. Inada, “A low loss multi fiber connector and its applications,” in IEEE Proceedings of the Fortieth Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers, New York, 1990), Vol. 1, pp. 865–868. [CrossRef]
  15. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992). [CrossRef]
  16. S. M. Prince, C. P. Beauchamp, F. A. P. Tooley, “Tolerancing of arrays of microlens relays: a case study,” Pure Appl. Opt. 3, 151–165 (1994). [CrossRef]
  17. Y. Liu, B. Robertson, D. V. Plant, H. S. Hinton, W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997). [CrossRef] [PubMed]
  18. L. D. Dickson, “Characteristics of a propagating Gaussian beam,” Appl. Opt. 9, 1854–1861 (1970). [CrossRef] [PubMed]
  19. W. Smith, Modern Optical Engineering—The Design of Optical Systems, 2nd ed. (McGraw-Hill, New York, 1990), Chap. 14, pp. 482–486.
  20. A. J. Heiney, C. L. Jiang, W. H. Reysen, “Polymer molded lenses for optoelectronics,” in Proceedings of the Forty-Fifth Electronic Components and Technology Conference (Institute of Elecrtrical and Electroncis Engineers, New York, 1995), pp. 170–175.
  21. I. Shenker, “Playing with blocks can be a fine art at this theme park,” Smithsonian Mag. 19(6), 120–124 (1988).
  22. J. D. Lytle, G. W. Wilkerson, J. G. Jaramillo, “Wideband optical transmission properties of seven thermoplastics,” Appl. Opt. 18, 1842–1846 (1979). [CrossRef] [PubMed]
  23. N. R. Basavanhally, M. F. Brady, D. B. Buchholz, “Optoelectronic packaging of two-dimensional surface active devices,” IEEE Trans. Components, Packag. Manuf. Technol. B 19, 107–115 (1996). [CrossRef]
  24. G. R. Olbright, J. L. Jewell, R. P. Bryan, W. S. Fu, “Micro-optic and microelectronic integrated packaging of vertical cavity laser arrays,” in Processing and Packaging of Semiconductor Lasers and Optoelectronic Devices, H. Temkin, ed., Proc. SPIE1851, 97–105 (1993). [CrossRef]
  25. J. P. Hall, M. Q. Kearly, A. J. Moseley, M. J. Goodwin, “Micropackaging technologies for optoelectronic components,” in IEE Colloquim on Microengineering and Optics, Digest 1994/043 (Institute of Electrical Engineers, London, 1994), pp. 9/1–9/6.
  26. E. M. Strzelecka, G. B. Thompson, G. D. Robinson, M. G. Peters, B. J. Thibeault, M. Mondry, V. Jayaraman, F. H. Peters, L. A. Coldren, “Monolithic integration of refractive lenses with vertical-cavity lasers and detectors for optical interconnections,” in Optoelectronic Packaging, M. R. Feldman, Y.-C. Lee, eds., Proc. SPIE2691, 43–53 (1996). [CrossRef]
  27. J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 370–374 (1993). [CrossRef]
  28. G. C. Boisset, B. Robertson, W. S. Hsiao, M. R. Taghizadeh, J. Simmons, K. Song, D. A. Thompson, D. V. Plant “On-die diffractive alignment structures for packaging of microlens arrays with 2D optoelectronic device arrays,” IEEE Photon. Technol. Lett. 8, 918–920 (1996). [CrossRef]
  29. P. Sheer, T. Collette, P. Churoux, “Free-space optical interconnection within SIMD massively parallel computers,” in Proceedings of the Fourth International Conference on Massively Parallel Processing using Optical Interconnects, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, New York, 1997), pp. 167–177. [CrossRef]
  30. R. Iscoff, “Are MCMs the new packaging champ?” Semicond. Int. 15(13), 48–54 (1992).
  31. V. Gupta, E. Schenfeld, “Performance analysis of a synchronous, circuit-switched interconnection cached network,” in Proceedings of the International Conference on Supercomputing ’94 (Association for Computing Machinery, New York, 1994), pp. xii + 439, 246–255.
  32. A. Barak, E. Schenfeld, “Embedding classical communication topologies in scaleable OPAM architecture,” IEEE Trans. Parallel Distribut. Syst. 7, 979–992 (1996). [CrossRef]
  33. S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996). [CrossRef] [PubMed]
  34. I. R. Redmond, E. Schenfeld, “Optoelectronic apparatus,” U.S. patent5,619, 359 (8April1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited