OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 14 — May. 10, 1998
  • pp: 2974–2984

Design of an optical interconnect for photonic backplane applications

Brian Robertson  »View Author Affiliations

Applied Optics, Vol. 37, Issue 14, pp. 2974-2984 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (371 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact alignment-tolerant interconnect has been developed for use within a prototype modulator-based free-space photonic backplane. The interconnect design encompasses several unique features. Microlens arrays are used, and several beams share each microlens by clustering the optical input–output in a small field about the optical axis of each lens. For simplifying the layout, the optical input and output of each smart-pixel array are clustered separately, thereby allowing a Fourier plane patterned-mirror array to be used in the beam-combination optics. This allows a suitable balance between high interconnection densities and reasonable optical relay distances between adjacent boards to be achieved. The primary advantages of this scheme are the simplicity of the optical design and its alignability, making it ideally suited for high-density interconnection applications.

© 1998 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(200.4650) Optics in computing : Optical interconnects
(250.5300) Optoelectronics : Photonic integrated circuits

Original Manuscript: June 11, 1997
Revised Manuscript: October 27, 1997
Published: May 10, 1998

Brian Robertson, "Design of an optical interconnect for photonic backplane applications," Appl. Opt. 37, 2974-2984 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon Technol. Lett. 7, 1057–1059 (1995). [CrossRef]
  2. T. Sanko, T. Matsumoto, K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system—COSINE-III,” Appl. Opt. 34, 1815–1822 (1995). [CrossRef]
  3. D. Z. Tsang, T. J. Goblick, “Free-space optical interconnection technology in parallel processing systems,” Opt. Eng. 33, 1524–1531 (1994). [CrossRef]
  4. S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996). [CrossRef] [PubMed]
  5. R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992). [CrossRef]
  6. T. H. Szymanski, H. S. Hinton, “A reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996). [CrossRef] [PubMed]
  7. M. E. Prise, N. C. Craft, R. E. LaMarche, M. M. Downs, S. J. Walker, L. A. D’Asaro, L. M. F. Chirovsky, “Module for optical logic circuits using symmetric self-electro-optic devices,” Appl. Opt. 29, 2164–2170 (1990). [CrossRef] [PubMed]
  8. S. M. Prince, F. A. P. Tooley, S. Wakelin, M. R. Taghizadeh, “Implementation of an optical perfect shuffle module,” Appl. Opt. 34, 1775–1782 (1995). [CrossRef] [PubMed]
  9. H. S. Hinton, in An Introduction to Photonic Switching Fabrics, R. W. Lucky, ed., Applications of Communications Theory Series (Plenum, New York, 1993), p. 293.
  10. D. R. Rolston, B. Robertson, H. S. Hinton, D. V. Plant, “Analysis of a microchannel interconnect based on the clustering of smart-pixel device windows,” Appl. Opt. 35, 1220–1233 (1996). [CrossRef] [PubMed]
  11. T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, L. M. F. Chirovsky, “Optical receivers for optoelectronic VLSI,” J. Sel. Topics Quantum Electron. 2, 106–117 (1996). [CrossRef]
  12. Y. S. Liu, B. Robertson, D. V. Plant, H. S. Hinton, W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997). [CrossRef] [PubMed]
  13. B. Robertson, “Design of a compact alignment tolerant optical interconnect for photonic backplane applications,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 68–77. [CrossRef]
  14. J. Jahns, S. J. Walker, “Two dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990). [CrossRef] [PubMed]
  15. A. L. Lentine, F. A. P. Tooley, “The relationship between speed and tolerances for self electro-optic effect devices,” Appl. Opt. 33, 1354–1375 (1994). [CrossRef] [PubMed]
  16. M. P. Y. Desmulliez, B. S. Wherrett, J. F. Snowdon, “Tolerance analysis of cascaded self-electro-optic-effect-device arrays,” Appl. Opt. 33, 1368–1375 (1994). [CrossRef] [PubMed]
  17. D. E. Smith, “Fault avoidance for fixed-interconnect optical computers,” Appl. Opt. 31, 167–177 (1992). [CrossRef] [PubMed]
  18. P. Belland, J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982). [CrossRef] [PubMed]
  19. Proposed modification to Institute of Electrical and Electronics Engineers Standard 1014-1987.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited