OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 14 — May. 10, 1998
  • pp: 3015–3030

Parametric Extension of the Classical Exposure-Schedule Theory for Angle-Multiplexed Photorefractive Recording over Wide Angles

Mark L. DeLong, Bradley D. Duncan, and Jack H. Parker  »View Author Affiliations


Applied Optics, Vol. 37, Issue 14, pp. 3015-3030 (1998)
http://dx.doi.org/10.1364/AO.37.003015


View Full Text Article

Acrobat PDF (764 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The gradual reorientations in crystal geometry encountered during angle-multiplexed holographic recording with obliquely incident recording beams can create significant parametric exposure-time and recording-angle dependencies in both grating writing- and erasure-time constants. We present a parametric extension of the classically derived backward-recursion algorithm that compensates for the intermingling effects of recording geometry, writing-beam intensity variations, and unique crystal behavior. We present experimental data for a sequence of 301 holograms recorded with the goal of equal hologram strength and, separately, the same sequence recorded with the goal of equal hologram reconstruction intensity—which are different cases for a steeply incident readout beam.

© 1998 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(090.4220) Holography : Multiplex holography
(090.7330) Holography : Volume gratings
(210.2860) Optical data storage : Holographic and volume memories
(210.4770) Optical data storage : Optical recording
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

Citation
Mark L. DeLong, Bradley D. Duncan, and Jack H. Parker, "Parametric Extension of the Classical Exposure-Schedule Theory for Angle-Multiplexed Photorefractive Recording over Wide Angles," Appl. Opt. 37, 3015-3030 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-14-3015


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
  2. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
  3. D. L. Staebler, W. J. Burke, W. Phillips, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
  4. M. C. Bashaw, T.-P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Theory of complementary holograms arising from electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 7, 2329–2338 (1990).
  5. J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
  6. J. Hong, I. McMichael, T. Chang, W. Christian, and E. G. Paek, “Volume holographic memory systems: techniques and architectures,” Opt. Eng. 34, 2193–2203 (1995).
  7. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 11, 70–76 (1995).
  8. F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
  9. F. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605–607 (1991).
  10. S. Tao, Z. H. Song, D. R. Selviah, and J. E. Midwinter, “Spatioangular-multiplexing scheme for dense holographic storage,” Appl. Opt. 34, 6729–6737 (1995).
  11. S. Tao, D. R. Selviah, and J. E. Midwinter, “Spatioangular multiplexed storage in 750 holograms in an Fe:LiNbO3 crystal,” Opt. Lett. 18, 921–914 (1993).
  12. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
  13. M. C. Bashaw, R. C. Singer, J. F. Heanue, and L. Hesselink, “Coded-wavelength multiplex volume holography,” Opt. Lett. 20, 1916–1918 (1995).
  14. C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Comm. 85, 171–176 (1991).
  15. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Potentialities and limitations of hologram multiplexing by using the phase-encoding technique,” Appl. Opt. 31, 5700–5705 (1992).
  16. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
  17. H. Zhou, F. Zhao, and F. T. S. Yu, “Angle-dependent diffraction efficiency in a thick photorefractive hologram,” Appl. Opt. 34, 1303–1309 (1995).
  18. D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
  19. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
  20. K. Bløtekjaer, “Limitations on holographic storage capacity of photochromic and photorefractive media,” Appl. Opt. 18, 57–67 (1979).
  21. H.-Y. S. Li and J. Hong, “Nonuniformity in hologram diffraction efficiency from time-constant error in the recording schedule,” J. Opt. Soc. Am. B 13, 894–899 (1996).
  22. G. W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed holographic storage using the 90° geometry,” Opt. Commun. 117, 49–55 (1995).
  23. A. Aharoni, M. C. Bashaw, and L. Hesselink, “Capacity considerations for multiplexed holographic optical data storage,” in Practical Holography VII: Imaging and Materials, S. A. Benton, ed., Proc. SPIE 1914, 56–65 (1993).
  24. X. An and D. Psaltis, “Experimental characterization of an angle-multiplexed holographic memory,” Opt. Lett. 20, 1913–1915 (1995).
  25. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
  26. A. C. Strasser, E. S. Maniloff, K. M. Johnson, and S. D. D. Goggin, “Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14, 6–8 (1989).
  27. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  28. E. Maniloff and K. Johnson, “Maximized photorefractive holographic storage,” J. Appl. Phys. 70, 4702–4707 (1991).
  29. G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
  30. C. Gu, J. Hong, H.-Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation in photovoltaic media,” J. Appl. Phys. 69, 1167–1172 (1991).
  31. M. L. DeLong, B. D. Duncan, and J. H. Parker, Jr., “Volume-holographic memory for laser threat discrimination,” J. Opt. Soc. Am. B 13, 2198–2208 (1996).
  32. M. L. DeLong, “Volume holographic memory for laser threat discrimination,” Ph.D. dissertation (University of Dayton, Dayton, Ohio, 1996).
  33. F. Zhao and K. Sayano, “Compact read-only memory with lensless phase-conjugate holograms,” Opt. Lett. 21, 1295–1297 (1996).
  34. A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995).
  35. A. A. Freschi and J. Frejlich, “Stabilized photorefractive modulation recording beyond 100% diffraction efficiency in LiNbO3:Fe crystals,” J. Opt. Soc. Am. B 11, 1837–1841 (1994).
  36. M. Aguilar, E. Serrano, V. López, M. Carrascosa, and F. Agulló-López, “Optimization of photorefractive recording by means of light phase-shifts,” Opt. Commun. 116, 398–404 (1995).
  37. A. V. Dooghin, P. N. Ilinykh, O. P. Nestiorkin, and B. Y. Zel’dovich, “Phase-locked detection in photorefractive crystals at the multiple frequency difference of light beams,” Opt. Lett. 17, 889–891 (1992).
  38. C. Gu and J. Hong, “Noise gratings formed during the multiple exposure schedule in photorefractive media,” Opt. Commun. 93, 213–218 (1992).
  39. C. Gu, J. Hong, and P. Yeh, “Volume holographic storage in photorefractive media,” in Optical Computing and Neural Networks, K.-Y. Hsu and H.-K. Liu, eds., Proc. SPIE 1812, 97–102 (1992).
  40. K. Kamra and K. Singh, “Characterization of beam fanning in BaTiO3 under biasing illumination and its application as log processor,” Opt. Eng. 34, 2266–2273 (1995).
  41. R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, and E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. QE-23, 2136–2141 (1987).
  42. C. Gu, G. Sornat, and J. Hong, “Bit-error rate and statistics of complex amplitude noise in holographic data storage,” Opt. Lett. 21, 1070–1072 (1996).
  43. L. Arizmendi, P. D. Townsend, M. Carrascosa, J. Baquedano, and J. M. Cabrera, “Photorefractive fixing and related thermal effects in LiNbO3,” J. Phys. Condens. Matter 3, 5399–5406 (1991).
  44. R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3214 (1992).
  45. J. A. Dobrowolski, in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, pp. 42.32, 42.40.
  46. We used the data analysis package Grapher for Windows by Golden Software, Inc. (Golden, Colo., 1993) to perform all numerical curve fits.
  47. G. W. Burr and D. Psaltis, “Effect of oxidation state of LiNbO3:Fe on the diffraction efficiency of multiple holograms,” Opt. Lett. 21, 893–895 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited