OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 14 — May. 10, 1998
  • pp: 3031–3037

Computer-originated planar holographic optical elements

Silviu Reinhorn, Yaakov Amitai, and Albert A. Friesem  »View Author Affiliations


Applied Optics, Vol. 37, Issue 14, pp. 3031-3037 (1998)
http://dx.doi.org/10.1364/AO.37.003031


View Full Text Article

Enhanced HTML    Acrobat PDF (276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present novel, to our knowledge, methods for the analytical design and recording of planar holographic optical elements in thick materials. The recording of each planar holographic element is done by interference of two aspherical waves that are derived from appropriately designed computer-generated holograms such that the element has the desired grating function for minimizing aberrations and closely fulfills the Bragg condition over its entire area. The design and recording methods are described, along with calculated results of representative elements.

© 1998 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.2890) Holography : Holographic optical elements
(090.2900) Holography : Optical storage materials

History
Original Manuscript: August 20, 1997
Revised Manuscript: January 6, 1998
Published: May 10, 1998

Citation
Silviu Reinhorn, Yaakov Amitai, and Albert A. Friesem, "Computer-originated planar holographic optical elements," Appl. Opt. 37, 3031-3037 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-14-3031


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Jannson, “Guided wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Lightwave Technol. 10, 888–897 (1992). [CrossRef]
  2. H. M. Ozaktas, Y. Amitai, J. W. Goodman, “Comparison of system size for some optical interconnection architectures and the folded multi-facet architecture,” Opt. Commun. 82, 225–228 (1991). [CrossRef]
  3. A. N. Putilin, V. N. Morozov, Q. Huang, J. H. Caufield, “Waveguide holograms with white light illumination,” Opt. Eng. 30, 1615–1619 (1991). [CrossRef]
  4. I. Glaser, “Compact lenslet array based holographic correlator/convolver,” Opt. Lett. 20, 1565–1567 (1995). [CrossRef] [PubMed]
  5. J. Jahns, S. Walker, “Imaging with planar optical systems,” Opt. Commun. 76, 313–317 (1989). [CrossRef]
  6. R. K. Kostuk, Y. T. Huang, D. Hetherington, M. Kato, “Reducing alignment and chromatic sensitivity of holographic optical interconnects with substrate-mode holograms,” Appl. Opt. 28, 4939–4944 (1989). [CrossRef] [PubMed]
  7. Y. Amitai, “Design of wavelength-division multiplexing/demultiplexing using substrate mode holographic elements,” Opt. Commun. 98, 24–28 (1993). [CrossRef]
  8. S. Reinhorn, S. Gorodeisky, A. A. Friesem, Y. Amitai, “Fourier transformation with planar holographic doublet,” Opt. Lett. 20, 495–497 (1995). [CrossRef] [PubMed]
  9. H. Kogelnik, “Coupled wave theory for thick holograms and their applications,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
  10. K. Winick, “Designing efficient aberration-free holographic lenses in the presence of a construction-reconstruction wavelength shift,” J. Opt. Soc. Am. 72, 143–148 (1982). [CrossRef]
  11. Y. Amitai, J. Goodman, “Design of substrate-mode holographic interconnects with different recording and readout wavelengths,” Appl. Opt. 30, 2376–2381 (1991). [CrossRef] [PubMed]
  12. Y. Amitai, A. A. Friesem, “Design of holographic optical elements by using recursive techniques,” J. Opt. Soc. Am. 5, 702–712 (1988). [CrossRef]
  13. W. H. Lee, “Binary synthetic holograms,” Appl. Opt. 13, 1677–1682 (1974). [CrossRef] [PubMed]
  14. Y. Amitai, A. A. Friesem, “Combining low aberration and high diffraction efficiency in holographic optical elements,” Opt. Lett. 13, 883–885 (1988). [CrossRef] [PubMed]
  15. R. C. Fairchild, J. R. Fienup, “Computer originated hologram lenses,” Opt. Eng. 21, 133–140 (1982).
  16. J. N. Latta, “Computer-based analysis of holography using ray tracing,” Appl. Opt. 10, 2698–2710 (1971). [CrossRef] [PubMed]
  17. R. W. Meier, “Magnification and third-order aberrations in holography,” J. Opt. Soc. Am. 55, 987–992 (1965).
  18. E. B. Champagne, “Nonparaxial imaging magnification and aberration properties in holography,” J. Opt. Soc. Am. 57, 51–55 (1967). [CrossRef]
  19. E. Hasman, A. A. Friesem, “Analytic optimization for holographic optical elements,” J. Opt. Soc. Am. A 6, 62–72 (1989). [CrossRef]
  20. J. Kedmi, A. A. Friesem, “Optimized holographic optical element,” J. Opt. Soc. Am. A 3, 2011–2018 (1986). [CrossRef]
  21. E. Socol, Y. Amitai, A. A. Friesem, “Design of planar optical interconnects,” in Ninth Meeting on Optical Engineering in Israel, I. Shladov, ed., Proc. SPIE2426, 433–442 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited