OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 15 — May. 20, 1998
  • pp: 3113–3120

Direct estimate of methane radiative forcing by use of nadir spectral radiances

Patrick Chazette, Cathy Clerbaux, and Gérard Mégie  »View Author Affiliations


Applied Optics, Vol. 37, Issue 15, pp. 3113-3120 (1998)
http://dx.doi.org/10.1364/AO.37.003113


View Full Text Article

Enhanced HTML    Acrobat PDF (488 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Direct determination of the radiative forcing of trace gases will be made possible by use of the next generation of nadir-looking spaceborne instruments that provide measurements of atmospheric radiances in the infrared spectral range with improved spectral and spatial resolution. An inversion statistical method has thus been developed and applied to the direct determination of the radiative forcing of methane, based on such instruments as the Fourier-transform Interferometric Monitor for Greenhouse Gases launched onboard the Japanese Advanced Earth Observing Satellite in 1996 and the Infrared Atmospheric Sounding Interferometer planned for the European polar platform Meteorological Operational Satellite in 2000. The method is based on simple statistical laws that directly relate the measured radiances to the radiative forcing by use of an a priori selection of appropriate spectral intervals and global modeling of methane spatial variations. This procedure avoids the use of an indirect determination based on an inversion process that requires precise knowledge of the methane vertical profiles throughout the troposphere. The overall accuracy and precision of this new algorithm are studied, and interfering gases and instrumental characteristics are taken into account. It is shown that radiative forcing can be determined at high horizontal spatial resolution with a precision better than 7% in cloud-free conditions and with well-known surface properties.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(030.5620) Coherence and statistical optics : Radiative transfer
(100.3190) Image processing : Inverse problems

History
Original Manuscript: May 27, 1997
Revised Manuscript: September 26, 1997
Published: May 20, 1998

Citation
Patrick Chazette, Cathy Clerbaux, and Gérard Mégie, "Direct estimate of methane radiative forcing by use of nadir spectral radiances," Appl. Opt. 37, 3113-3120 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-15-3113


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Intergovernmental Panel on Climate Change , “Climate change 1995,” in The Science of Climate Change, J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, K. Maskell, eds. (Cambridge U. Press, London, 1996).
  2. J. E. Hansen, A. Lacis, R. Ruedy, M. Sato, H. Wilson, “How sensitive is the world’s climate?” Natl. Geogr. Res. Explor. 9, 142–158 (1993).
  3. J. T. Kiehl, B. P. Briegleb, “The relative role of sulfate aerosols and greenhouse gases in climate forcing,” Science 260, 311–314 (1993). [CrossRef] [PubMed]
  4. D. A. Hauglustaine, C. Granier, G. P. Brasseur, G. Mégie, “The importance of atmospheric chemistry in the calculation of radiative forcing on the climate system,” J. Geophys. Res. 99, 1173–1186 (1994). [CrossRef]
  5. T. M. L. Wigley, “Global-mean temperature and sea level consequences of greenhouse gas concentration stabilization,” Geophys. Res. Lett. 22, 45–48 (1995). [CrossRef]
  6. World Meteorological Organization (WMO), “Scientific Assessment of Ozone Depletion: 1994,” Rep. 37, Global Ozone Research and Monitoring Project (WMO, Geneva, Switzerland, 1995).
  7. T. Ogawa, H. Shimoda, M. Hayashi, R. Imasu, A. Ono, S. Nishimomiya, H. Kobayashi, “IMG, interferometric measurement of greenhouse gases from space,” Adv. Space Res. 14, 25–28 (1994). [CrossRef]
  8. F. Cayla, P. Javelle, “IASI instrument overview,” in Advanced and Next-Generation Satellites, H. Fujisada, M. N. Sweeting, eds., Proc. SPIE2583, 271–281 (1995). [CrossRef]
  9. W. L. Smith, E. R. Revercomb, D. D. Laporte, L. A. Sromovsky, S. Silverman, H. M. Woolf, H. B. Howell, R. O. Knuteson, H. L. Huang, “HIS-GOES: High resolution Interferometer Sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990). [CrossRef]
  10. H. Worden, R. Beer, C. P. Rinsland, “Airborne Infrared Spectroscopy of 1994 western wildfires,” J. Geophys. Res. 102, 1287–1293 (1997). [CrossRef]
  11. H. H. Aumann, C. Miller, “Atmospheric Infrared Sounder (AIRS) on the Earth Observing System,” in Advanced and Next-Generation Satellite, H. Fujisada, M. N. Sweeting, eds., Proc. SPIE2583, 332–338 (1995). [CrossRef]
  12. R. Beer, T. A. Glavich, “Remote sensing of the atmosphere by infrared emission spectroscopy,” in Advanced Optical Instrumentation for Remote Sensing of the Earth’s Surface from Space, G. Duchossois, F. L. Herr, R. Zander, eds., Proc. SPIE1129, 42–48 (1989). [CrossRef]
  13. J. F. Müller, G. Brasseur, “IMAGES: a three dimensional chemical transport model of the global troposphere,” J. Geophys. Res. 100, 16,445–16,490 (1995). [CrossRef]
  14. Z. L. Li, F. Becker, “Feasibility of land surface temperature and emissivity determination from AVHRR data,” Remote Sensing Environ. 43, 67–85 (1993). [CrossRef]
  15. K. Goïta, A. Royer, “Surface temperature and emissivity separability over land surface from combined TIR and SWIR AVHRR data,” IEEE Trans. Geosci. Remote Sens. 35, 718–733 (1997). [CrossRef]
  16. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rindsland, M. A. Smith, C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992). [CrossRef]
  17. A. Chedin, N. A. Scott, C. Wahiche, P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of TIROS-N series,” J. Climat. Appl. Meteorol. 24, 128–143 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited