OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 15 — May. 20, 1998
  • pp: 3133–3142

Estimation of the amount of tropospheric ozone in a cloudy sky by ground-based Fourier-transform infrared emission spectroscopy

Dietrich Spänkuch, Wolfgang Döhler, Jürgen Güldner, and Elena Schulz  »View Author Affiliations

Applied Optics, Vol. 37, Issue 15, pp. 3133-3142 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The problem of retrieving minor concentrations of constituents by ground-based Fourier-transform infrared emission spectroscopy is addressed by means of the concept of differential optical emission spectroscopy in analogy to the concept of differential optical absorption spectroscopy. Using the prominent ν3 ozone feature at 1043 cm-1, we show that the strength of the spectral signature depends not only on the amount of ozone but also on the atmospheric thermal structure. This dependence can be described by a rather accurate approximation, which was used to construct a simple diagram to estimate the amount of column ozone between the instrument site and a cloud deck as well as to determine the detection limit. The detection limit is shown to depend on cloud base height. For a given thermal lapse rate it was found that the lower the detection limit, the higher the cloud base altitude. However, as shown in a case study with variable cloud base height, the concept fails for semitransparent clouds. Multiple scattering of the emitted radiation within the clouds yielded a path enhancement that simulated an enhanced amount of constituent. The path enhancement was estimated to be 2.4–4 km at 1000 cm-1 for low-level clouds, equivalent to an enhancement factor of 6–21. The multiple scattering effect has considerable consequences for ground-based as well as for nadir satellite retrieval techniques in cloudy skies.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.4950) Atmospheric and oceanic optics : Ozone
(010.7030) Atmospheric and oceanic optics : Troposphere
(290.1090) Scattering : Aerosol and cloud effects
(300.2140) Spectroscopy : Emission
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

Original Manuscript: September 3, 1997
Published: May 20, 1998

Dietrich Spänkuch, Wolfgang Döhler, Jürgen Güldner, and Elena Schulz, "Estimation of the amount of tropospheric ozone in a cloudy sky by ground-based Fourier-transform infrared emission spectroscopy," Appl. Opt. 37, 3133-3142 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Lelieveld, P. J. Crutzen, “Influences of cloud photochemical processes on tropospheric ozone,” Nature (London) 343, 227–233 (1990). [CrossRef]
  2. J. E. Jonson, I. S. A. Isaksen, “Tropospheric ozone chemistry: the impact of cloud chemistry,” J. Atmos. Chem. 16, 99–122 (1993). [CrossRef]
  3. W. Chameides, J. C. G. Walker, “A photochemical theory of tropospheric ozone,” J. Geophys. Res. 78, 8751–8760 (1973). [CrossRef]
  4. G. P. Ayers, S. A. Penkett, R. W. Gillett, B. Bandy, I. E. Galbally, C. P. Meyer, C. M. Elsworth, S. T. Bentley, B. W. Forgan, “Evidence for photochemical control of ozone concentrations in unpolluted marine air,” Nature (London) 360, 446–449 (1992). [CrossRef]
  5. J. Fishman, S. Solomon, P. J. Crutzen, “Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone,” Tellus 31, 432–446 (1979). [CrossRef]
  6. C. E. Junge, “Global ozone budget and exchange between stratosphere and troposphere,” Tellus 14, 363–377 (1962). [CrossRef]
  7. E. F. Danielsen, R. S. Hipskind, S. E. Gaines, G. W. Sachse, G. L. Gregory, G. F. Hill, “Three-dimensional analysis of potential vorticity associated with tropopause folds and observed variations of ozone and carbon monoxide,” J. Geophys. Res. 92, 2103–2111 (1987). [CrossRef]
  8. M. A. Shapiro, “Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere,” J. Atmos. Sci. 37, 994–1004 (1980). [CrossRef]
  9. A. Ebel, H. Hass, H. J. Jakobs, M. Laube, M. Memmesheimer, A. Oberreuter, H. Geiss, Y.-H. Kuo, “Simulation of ozone intrusion caused by a tropopause fold and cut-off low,” Atmos. Environ. A 25, 2131–2144 (1991). [CrossRef]
  10. G. M. Ancellet, M. Beekmann, A. Papayannis, “Impact of a cut off low development on downward transport of ozone in the troposphere,” J. Geophys. Res. 99, 3451–3468 (1994). [CrossRef]
  11. I. E. Galbally, C. R. Roy, “Destruction of ozone at the earth’s surface,” Q. J. R. Meteorol. Soc. 106, 599–620 (1980). [CrossRef]
  12. J. A. Garland, A. W. Elzerman, S. A. Penkett, “The mechanism for dry deposition of ozone to seawater surfaces,” J. Geophys. Res. 85, 7488–7492 (1980). [CrossRef]
  13. I. Colbeck, R. M. Harrison, “Dry deposition of ozone: some measurements of deposition velocity and of vertical profiles to 100 meters,” Atmos. Environ. 19, 1807–1818 (1985). [CrossRef]
  14. D. W. Tarasick, D. I. Wardle, J. B. Kerr, J. J. Bellefleur, J. Davies, “Tropospheric ozone trends over Canada: 1980–1993,” Geophys. Res. Lett. 22, 409–412 (1995). [CrossRef]
  15. J. A. Logan, “Trends in the vertical distribution of ozone: An analysis of ozonesonde data,” J. Geophys. Res. 99, 25,553–25,585 (1994). [CrossRef]
  16. H. Claude, W. Steinbrecht, “Ozone and temperature changes in the long Hohenpeissenberg time series,” in Polar Stratospheric Ozone, J. A. Pyle, N. R. P. Harris, G. T. Amanatidis, eds., Air Pollution Research Rep. 56, (European Commission, Luxembourg, 1996), pp. 502–505.
  17. J. Fishman, P. Minuis, H. G. Reichle, “Use of satellite data to study tropospheric ozone in the tropics,” J. Geophys. Res. 91, 14,451–14,465 (1986). [CrossRef]
  18. J. Fishman, “Tropospheric ozone from satellite total ozone measurements,” in Tropospheric Ozone, I. S. A. Isaksen, ed. (Reidel, Norwell, Mass., 1988), pp. 111–123. [CrossRef]
  19. J. Fishman, C. E. Watson, J. C. Larsen, J. A. Logan, “The distribution of tropospheric ozone determined from satellite data,” J. Geophys. Res. 95, 3599–3617 (1990). [CrossRef]
  20. R. D. Hudson, J.-H. Kim, A. M. Thompson, “On the derivation of tropospheric column ozone from radiances measured by the total ozone mapping spectrometer,” J. Geophys. Res. 100, 11,137–11,145 (1995). [CrossRef]
  21. W. L. Smith, H. E. Revercomb, H. B. Howell, H.-L. Huang, R. O. Knuteson, F. W. Koenig, D. D. La Porte, S. Silverman, L. A. Sromovsky, H. M. Woolf, “GHIS—The GOES High-Resolution Interferometer Sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990). [CrossRef]
  22. M. Perrone, P. Ingmann, A. Chedin, J. Eyre, R. Rizzi, W. L. Smith, D. Spänkuch, J. Svensson, “Requirements for an operational interferometer thermal sounder,” EUMETSAT Sounder Science Working Group, EUM/ESSWG/REP91/1 (European Organization for Exploitation of Meteorological Satellites, Darmstadt, Germany, 1991).
  23. H. E. Revercomb, W. L. Smith, R. O. Knuteson, F. A. Best, “Advanced sounding systems: the polar orbiting ITS and the ground-based AERI,” in Technical Proceedings of the Seventh International TOVS Study Conference, J. Eyre, ed. (European Centre for Medium Range Weather Forecasts, Reading, UK, 1993), pp. 404–415.
  24. T. Ogawa, H. Shimoda, M. Hayashi, R. Imasu, A. Ono, S. Nishinomiya, H. K. Kobayashi, “IMG, inteferometric measurement of greenhouse gases from space,” Adv. Space Res. 14, 25–28 (1994). [CrossRef]
  25. R. J. Curran, “NASA’s plans to observe the earth’s atmosphere with lidar,” IEEE Trans. Geosci. Remote Sens. 27, 154–163 (1989). [CrossRef]
  26. E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985). [CrossRef] [PubMed]
  27. J. T. Houghton, F. W. Taylor, C. D. Rodgers, Remote Sounding of Atmospheres (Cambridge U. Press, Cambridge, 1984).
  28. E. Puckrin, W. F. J. Evans, T. A. B. Adamson, “Measurement of tropospheric ozone by thermal emission spectroscopy,” Atmos. Environ. 30, 563–568 (1996). [CrossRef]
  29. D. Spänkuch, W. Döhler, J. Güldner, A. Keens, “Ground-based passive atmospheric remote sounding by FTIR emission spectroscopy—first results with EISAR,” Beitr. Phys. Atmos. 69, 97–111 (1996).
  30. D. Spänkuch, W. Döhler, J. Güldner, A. Keens, “FTIR downwelling radiance measurements at Potsdam with the EISAR system for different meteorological conditions and viewings: first results,” in Third International Symposium on Tropospheric Profiling: Needs and Technologies (Max-Planck-Institüt für Meteorologie, Hamburg, 1994), pp. 436–438.
  31. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 27–84.
  32. J. M. C. Plane, N. Smith, “Atmospheric monitoring by differential optical absorption spectroscopy,” in Environmental Sciences, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1995), pp. 223–262.
  33. S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3-Spectral simulation,” in IRS’88: Current Problems in Atmospheric Radiation, J. Lenoble, J.-F. Geleyn, eds. (Deepak, Hampton, Va., 1989), pp. 372–375.
  34. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, J. S. Garing, F. E. Volz, “Optical properties of the atmosphere,” AFCRL-70-0527 environ. res. paper 331 (U.S. Air Force, L. G. Hanscom Field, Bedford, Mass., 1970).
  35. K. Ya. Kondratyev, Yu. M. Timofeyev, Thermal Sounding of the Atmosphere from Satellites (Gidrometeoizdat, Leningrad, 1970), in Russian.
  36. B. B. Balsley, J. W. Birks, M. L. Jensen, H. G. Knapp, J. B. Williams, G. W. Tyrell, “Ozone profiling using kites,” Nature (London) 369, 23 (1994). [CrossRef]
  37. M. Trainer, B. A. Ridley, M. P. Buhr, G. Kok, J. Walega, G. Hübler, D. D. Parrish, F. C. Fehsenfeld, “Regional ozone and urban plumes in the southeastern United States: Birmingham, a case study,” J. Geophys. Res. 100, 18,823–18,834 (1995). [CrossRef]
  38. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. La Porte, W. L. Smith, L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder,” Appl. Opt. 27, 3210–3218 (1988). [CrossRef] [PubMed]
  39. H. Grassl, “Bestimmung der Grössenverteilung von Wolkenelementen aus spektralen Transmissionsmesssungen,” Beitr. Phys. Atmos. 43, 255–284 (1970).
  40. G. H. Ruppersberg, R. Schellhase, H. Schuster, “Calculation about transmittance window of clouds and fog at about 10.5 μm wavelength,” Atmos. Environ. 9, 723–730 (1975). [CrossRef]
  41. W. D. Komhyr, R. A. Barnes, G. B. Brothers, J. A. Lathrop, D. P. Oppermann, “Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989,” J. Geophys. Res. 100, 9231–9244 (1995). [CrossRef]
  42. S. J. Reid, G. Vaughan, A. R. W. Marsh, H. G. J. Smit, “Accuracy of ozonesonde measurements in the troposphere,” J. Atmos. Chem. 25, 215–226 (1996). [CrossRef]
  43. G. Yamamoto, T. Masayuki, A. Shoji, “Radiative transfer in water clouds in the infrared region,” J. Atmos. Sci. 27, 282–292 (1970). [CrossRef]
  44. G. E. Hunt, “Radiative properties of the terrestrial clouds at visible and infra-red thermal window wavelengths,” Q. J. R. Meteorol. Soc. 19, 346–369 (1973).
  45. A. J. Baran, P. D. Watts, “Radiative properties of water and ice clouds at wavelengths appropriate to the HIRS instrument channels,” Meteorological Office Bracknell, Short Range Forecasting Division, scientific paper 5 (H. M. Stationery Office, London, 1992).
  46. T. Wagner, T. Senne, F. Erle, C. Otten, J. Stutz, K. Pfeilsticker, U. Platt, “Determination of cloud properties and cloud type from DOAS measurements,” in Atmospheric Ozone Dynamics: Observations in the Mediterranean Region, C. Varotsos, ed., Vol. I58 of NATO ASI Series (Springer-Verlag, Berlin, 1997), pp. 327–336. [CrossRef]
  47. F. Erle, K. Pfeilsticker, U. Platt, “On the influence of tropospheric clouds on zenith-scattered-light measurements of stratospheric species,” Geophys. Res. Lett. 22, 2725–2728 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited