OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 15 — May. 20, 1998
  • pp: 3143–3148

Aperture dependence of the mixing efficiency, the signal-to-noise ratio, and the speckle number in coherent lidar receivers

Walter R. Leeb, Peter J. Winzer, and Klaus H. Kudielka  »View Author Affiliations


Applied Optics, Vol. 37, Issue 15, pp. 3143-3148 (1998)
http://dx.doi.org/10.1364/AO.37.003143


View Full Text Article

Enhanced HTML    Acrobat PDF (164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With the aid of the van Cittert–Zernike theorem we develop an analytical expression for the ensemble-averaged heterodyne mixing efficiency in coherent lidar receivers that are looking at a diffuse target that is in the receiver’s far field. Our extremely simple and straightforward analysis shows that the dependence of the mixing efficiency on the receive aperture size d R first follows a parabolic decrease and later approaches a (d R )-2 function. As a consequence, the signal-to-noise ratio does not increase proportionally to the aperture area but saturates. For the system model chosen, the heterodyne mixing efficiency exhibits the same functional dependence on the lidar geometry as the reciprocal of the number of speckle cells within the receive aperture.

© 1998 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3640) Atmospheric and oceanic optics : Lidar
(030.6140) Coherence and statistical optics : Speckle
(040.2840) Detectors : Heterodyne
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: August 25, 1997
Revised Manuscript: January 29, 1998
Published: May 20, 1998

Citation
Walter R. Leeb, Peter J. Winzer, and Klaus H. Kudielka, "Aperture dependence of the mixing efficiency, the signal-to-noise ratio, and the speckle number in coherent lidar receivers," Appl. Opt. 37, 3143-3148 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-15-3143


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Zhao, M. J. Post, R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1. Theory,” Appl. Opt. 29, 4111–4119 (1990). [CrossRef] [PubMed]
  2. J. Y. Wang, “Detection efficiency of coherent optical radar,” Appl. Opt. 23, 3421–3427 (1984). [CrossRef] [PubMed]
  3. R. G. Frehlich, M. J. Kavaya, “Coherent laser radar performance for general atmospheric refractive turbulence,” Appl. Opt. 30, 5325–5352 (1991). [CrossRef] [PubMed]
  4. W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995). [CrossRef]
  5. R. M. Huffaker, R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996). [CrossRef]
  6. P. Gatt, T. P. Costello, D. A. Heimmermann, D. C. Castellanos, A. R. Weeks, C. M. Stickley, “Coherent optical array receivers for the mitigation of atmospheric turbulence and speckle effects,” Appl. Opt. 35, 5999–6009 (1996). [CrossRef] [PubMed]
  7. M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965).
  8. M. Abramowitz, I. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965).
  9. B. J. Klein, J. J. Degnan, “Optical antenna gain. 1. Transmitting antennas,” Appl. Opt. 13, 2134–2140 (1974). [CrossRef] [PubMed]
  10. W. Pichler, W. R. Leeb, “Target-plane intensity approximation for apertured Gaussian beams applied to heterodyne backscatter lidar systems,” Appl. Opt. 33, 4761–4770 (1994). [CrossRef] [PubMed]
  11. R. G. Frehlich, “Optimal local oscillator field for a monostatic coherent laser radar with a circular aperture,” Appl. Opt. 32, 4569–4577 (1993). [CrossRef] [PubMed]
  12. J. Y. Wang, “Optimum truncation of a lidar transmitted beam,” Appl. Opt. 27, 4470–4474 (1988). [CrossRef] [PubMed]
  13. More specifically, the factor given as 6/2 (=4.24) in relation (22) increases continually from 4.01 to 4.70 if dT/2WT increases from 1.0 to 2.0.
  14. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle, J. C. Dainty, ed. (Springer-Verlag, New York, 1975). [CrossRef]
  15. A. D. Dabas, P. H. Flamant, P. Salamitou, “Characterization of pulsed coherent Doppler LIDAR with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited