OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 15 — May. 20, 1998
  • pp: 3149–3163

Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations

Takashi Y. Nakajima, Teruyuki Nakajima, Masakatsu Nakajima, Hajime Fukushima, Makoto Kuji, Akihiro Uchiyama, and Motoaki Kishino  »View Author Affiliations

Applied Optics, Vol. 37, Issue 15, pp. 3149-3163 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (513 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The channel specifications of the Global Imager onboard the Advanced Earth Observing Satellite II have been determined by extensive numerical experiments. The results show that there is an optimum feasible position for each ocean color channel. The bandwidth of the 0.763-μm channel should be less than 10 nm for good sensitivity to the cloud top height and geometric thickness of the cloud layer; a 40-nm bandwidth is suitable for the 1.38-μm channel to have the strongest contrast between cloudy and clear radiance with a sufficient radiant energy; and a 3.7-μm channel is better than a 3.95-μm channel for estimation of the sea surface temperature (SST) and determination of the cloud particle size when the bandwidth of the channel is 0.33 μm. A three-wavelength combination of 6.7, 7.3, and 7.5 μm is an optimized choice for water vapor profiling. The combination of 8.6, 10.8, and 12.0 μm is suitable for cloud microphysics and SST retrievals with the split-window technique.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(130.6010) Integrated optics : Sensors
(220.4830) Optical design and fabrication : Systems design

Original Manuscript: September 5, 1997
Revised Manuscript: January 26, 1998
Published: May 20, 1998

Takashi Y. Nakajima, Teruyuki Nakajima, Masakatsu Nakajima, Hajime Fukushima, Makoto Kuji, Akihiro Uchiyama, and Motoaki Kishino, "Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations," Appl. Opt. 37, 3149-3163 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. King, Y. J. Kaufman, W. P. Manzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992). [CrossRef]
  2. F. X. Kneizys, E. P. Shettle, L. W. Arbeu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to lowtran-7,” Air Force Geophysics Laboratory Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  3. T. Nakajima, M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986). [CrossRef]
  4. T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988). [CrossRef]
  5. T. Nakajima, M. D. King, “Asymptotic theory for optically thick layers: application to the discrete ordinates method,” Appl. Opt. 31, 7669–7683 (1992). [CrossRef] [PubMed]
  6. K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  7. S. W. Jeffrey, “Algal pigment system,” in Primary Productivity in the Sea, P. G. Falkowsky, ed. (Plenum, New York, 1980), pp. 33–58. [CrossRef]
  8. D. L. B. Jupp, J. T. O. Kirk, G. P. Harris, “Detection, identification and mapping of cyanobacteria using remote sensing to measure the optical quality of turbid inland waters,” Aust. J. Mar. Freshwater Res. 45, 801–828 (1994). [CrossRef]
  9. M. Kishino, S. Sugihara, N. Okami, “Influence of fluorescence of chlorophyll a on underwater upward irradiance spectrum,” La mer 22, 224–232 (1984).
  10. R. M. Letelier, M. R. Abott, “An analysis of chlorophyll fluorescence algorithm for the Moderate Resolution Imaging Spectrometer (MODIS),” Remote Sensing Environ. 58, 215–223 (1996). [CrossRef]
  11. G. Yamamoto, D. Q. Wark, “Discussion of the Letter by R. A. Hanel, determination of cloud altitude from a satellite,” J. Geophys. Res. 66, 3596 (1961). [CrossRef]
  12. J. Fischer, H. Grassl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical Study,” J. Appl. Meteorol. 30, 1245–1259 (1991). [CrossRef]
  13. J. Fischer, W. Cordes, A. Schmitz-Peiffer, W. Renger, P. Mörl, “Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 2: Measurements,” J. Appl. Meteorol. 30, 1260–1267 (1991). [CrossRef]
  14. S. Asano, M. Shiobara, A. Uchiyama, “Estimation of cloud physical parameters from airborne solar spectral reflectance measurements for stratocumulus clouds,” J. Atmos. Sci. 52, 3556–3576 (1995). [CrossRef]
  15. B.-C. Gao, A. F. H. Goetz, W. J. Wiscombe, “Cirrus cloud detection from airborne imaging spectrometer data using 1.38 micron water vapor band,” Geophys. Res. Lett. 20, 301–304 (1993). [CrossRef]
  16. K. Arai, “A method for surface temperature retrieval with ASTER/TIR,” in Proceedings of 1994 International Geoscience and Remote Sensing Symposium, T. I. Stain, ed. (Institute of Electrical and Electronics Engineers, New Jersey, 1994), p. 199. [CrossRef]
  17. Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994). [CrossRef]
  18. T. Y. Nakajima, T. Nakajima, “Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions,” J. Atmos. Sci. 52, 4043–4059 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited