OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 15 — May. 20, 1998
  • pp: 3181–3189

Polarization-independent optical fiber modulator by use of polymer-dispersed liquid crystals

Kuniharu Takizawa, Kenichi Kodama, and Kiyoshi Kishi  »View Author Affiliations


Applied Optics, Vol. 37, Issue 15, pp. 3181-3189 (1998)
http://dx.doi.org/10.1364/AO.37.003181


View Full Text Article

Enhanced HTML    Acrobat PDF (454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrasmall light modulators have been made by sandwiching a polymer-dispersed liquid crystal (PDLC) between two ferrules with optical fibers. The device can modulate light independent of the state of polarization, because the PDLC becomes transparent or opaque when either sufficient or no voltage is applied to the film. The PDLC was prepared by mixing and annealing a prepolymer and nematic liquid crystal with large anisotropy. An optical fiber modulator with a 30-μm thick PDLC film had an extinction ratio of 8:1–33:1, an insertion loss of 1.3 dB, and rise and decay times of 4 ms at a wavelength of 1.3 μm.

© 1998 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4510) Fiber optics and optical communications : Optical communications
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(230.4110) Optical devices : Modulators

History
Original Manuscript: April 28, 1997
Revised Manuscript: December 9, 1997
Published: May 20, 1998

Citation
Kuniharu Takizawa, Kenichi Kodama, and Kiyoshi Kishi, "Polarization-independent optical fiber modulator by use of polymer-dispersed liquid crystals," Appl. Opt. 37, 3181-3189 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-15-3181


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Patel, M. A. Saifi, D. W. Berreman, C. Lin, N. Andreadakis, S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot etalon,” Appl. Phys. Lett. 57, 1718–1720 (1990). [CrossRef]
  2. M. W. Maeda, J. S. Patel, D. A. Smith, C. Lin, M. A. Saifi, V. Lehman, “An electrically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element,” IEEE Photon. Technol. Lett. 2, 787–789 (1990). [CrossRef]
  3. M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, R. Spicer, “Electrically tunable liquid-crystal-etalon filter for high-density WDM systems,” IEEE Photon. Technol. Lett. 2, 820–822 (1990). [CrossRef]
  4. R. A. Soref, “N × N and 1 × N switching with chiral nematic liquid crystals,” Appl. Opt. 30, 183–184 (1991). [CrossRef] [PubMed]
  5. J. S. Patel, S.-D. Lee, “Electrically tunable and polarization insensitive Fabry–Perot etalon with a liquid-crystal film,” Appl. Phys. Lett. 58, 2491–2493 (1991). [CrossRef]
  6. K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” IEEE J. Lightwave Technol. 9, 1726–1732 (1991). [CrossRef]
  7. K. Hirabayashi, T. Kurokawa, “Improvement of the transmission spectra of tunable wavelength-selective liquid crystal Fabry–Perot interferometer filters,” Jpn. J. Appl. Phys. 32, L1425–L1428 (1993). [CrossRef]
  8. M. Kobayashi, H. Terui, M. Kawachi, J. Noda, “2 × 2 optical waveguide matrix switch using nematic liquid crystal,” IEEE J. Quantum Electron. QE-18, 1603–1609 (1982). [CrossRef]
  9. Y. Okamura, K. Kitatani, S. Yamamoto, “Electrooptic leaky anisotropic waveguides using nematic liquid crystal overlayers,” IEEE J. Lightwave Technol. LT-2, 292–295 (1984). [CrossRef]
  10. E. S. Goldburt, P. St. J. Russell, “Nonlinear single-mode fiber coupler using liquid crystals,” Appl. Phys. Lett. 46, 338–340 (1985). [CrossRef]
  11. K. Liu, W. V. Sorin, H. J. Shaw, “Single-mode-fiber evanescent polarizer/amplitude modulator using liquid crystals,” Opt. Lett. 11, 180–182 (1986). [CrossRef] [PubMed]
  12. P. G. Verly, “Low-loss liquid-crystal-clad waveguide switching with a large angular separation of the optical beams,” Can. J. Phys. 65, 476–483 (1987). [CrossRef]
  13. R. Kashyap, C. S. Winter, B. K. Nayar, “Polarization-desensitized liquid-crystal overlay optical-fiber modulator,” Opt. Lett. 13, 401–403 (1988). [CrossRef]
  14. A. Karppinen, H. Kopola, R. Myllyla, “Scattering liquid crystal in optical attenuator applications,” in Liquid-Crystal Devices and Materials, P. S. Drazaic, U. Efron, eds., Proc. SPIE1455, 179–189 (1991). [CrossRef]
  15. J. L. Fergason, “Polymer encapsulated nematic liquid crystals for display and light control applications,” SID Int. Symp. Dig. 16, 68–70 (1985).
  16. J. W. Doane, N. A. Vaz, B.-G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986). [CrossRef]
  17. B.-G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987). [CrossRef]
  18. A. Golemme, S. Zumer, J. W. Doane, M. E. Neubert, “Deuterium NMR of polymer dispersed liquid crystals,” Phys. Rev. 37, 559–569 (1988). [CrossRef]
  19. P. S. Drazaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988). [CrossRef]
  20. G. P. Montgomery, “Polymer-dispersed and encapsulated liquid crystal films,” in Large-Area Chromogenics: Materials and Devices for Transmittance Control, C. G. Granqvist, C. M. Lampert, eds., Vol. IS04 of SPIE Institute Series577–606 (SPIE Press, Bellingham, Wash., 1990).
  21. T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/(liquid crystal) composite films,” Chem. Lett. 1989, 813–816 (1989). [CrossRef]
  22. T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.
  23. A. Fuh, O. Caporaletti, “Polymer dispersed nematic liquid crystal films: the density ratio and polymer’s curing rate effects,” J. Appl. Phys. 66, 5278–5284 (1989). [CrossRef]
  24. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
  25. J. K. Wheeler, J. Ocenasek, P. P. Bohn, “Two-way transmission using electro-optical modulator,” Electron. Lett. 22, 479–481 (1986). [CrossRef]
  26. P. J. Duthie, M. J. Wale, I. Bennion, J. Hankey, “Bidirectional fiber-optical link using selective modulation,” Electron. Lett. 22, 517–518 (1986). [CrossRef]
  27. E. J. Murphy, J. Ocenasek, C. R. Sandahl, R. J. Lisco, Y. C. Chen, “Simultaneous single-fiber transmission of video and bidirectional voice/data using LiNbO3 guided-wave devices,” IEEE J. Lightwave Technol. 6, 937–944 (1988). [CrossRef]
  28. M. Maeda, T. Ishikawa, K. Oyamada, S. Fujisawa, K. Murakami, Y. Utsumi, “Hi-vision optical CATV system employing demand access technology,” NHK (Nippon Hoso Kyokai) Giken Res. Dev. 18, 18–26 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited