OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 15 — May. 20, 1998
  • pp: 3236–3245

Radiation pressure and stability of interferometric gravitational-wave detectors

Vijay Chickarmane, Sanjeev V. Dhurandhar, Roland Barillet, Patrice Hello, and Jean-Yves Vinet  »View Author Affiliations


Applied Optics, Vol. 37, Issue 15, pp. 3236-3245 (1998)
http://dx.doi.org/10.1364/AO.37.003236


View Full Text Article

Enhanced HTML    Acrobat PDF (211 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of radiation pressure on the stability of Fabry–Perot cavities with hanging mirrors is investigated. Such cavities will form an integral part of the laser interferometric gravitational-wave detectors that are being constructed around the globe. The mirrors are hung by means of a pendulum suspension and are locked by servo controls. We assume a realistic servo-control transfer function that satisfies the standard stability criteria. We find that for positive offsets from the resonance of the cavity the system is stable. However, we show that for negative offsets instabilities can occur, although the servo system has the effect of increasing the instability threshold, compared with the nonservoed case. Conditions for stability are finally given, involving the finesse of the cavity, the input power, the mass of the mirrors, the servo gain, and the phase detuning from perfect resonance. Gravitational-wave detectors with arm cavities having a finesse as low as approximately 200 could exhibit instabilities. Some implications for the locking of these detectors are finally given.

© 1998 Optical Society of America

OCIS Codes
(000.2780) General : Gravity
(040.0040) Detectors : Detectors
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(350.5610) Other areas of optics : Radiation

History
Original Manuscript: June 3, 1997
Revised Manuscript: November 3, 1997
Published: May 20, 1998

Citation
Vijay Chickarmane, Sanjeev V. Dhurandhar, Roland Barillet, Patrice Hello, and Jean-Yves Vinet, "Radiation pressure and stability of interferometric gravitational-wave detectors," Appl. Opt. 37, 3236-3245 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-15-3236


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Thorne, “Gravitational radiation,” in In 300 Years of Gravitation, S. W. Hawking, W. Israel, eds. (Cambridge U. Press, Cambridge, UK, 1987).
  2. D. Blair, ed., The Detection of Gravitational Waves (Cambridge U. Press, Cambridge, UK, 1991). [CrossRef]
  3. A. Giazotto, “Interferometric detection of gravitational waves,” Phys. Rep. 182, 365–425 (1989). [CrossRef]
  4. R. W. P. Drever, “Interferometric detectors for gravitational wave detection,” in Gravitational Radiation, N. Deruelle, T. Piran, eds. (North-Holland, Amsterdam, The Netherlands, 1983).
  5. J.-Y. Vinet, B. J. Meers, C. N. Man, A. Brillet, “Optimization of long-baseline interferometers for gravitational-wave detection,” Phys. Rev. D 38, 433–447 (1988). [CrossRef]
  6. A. Dorsel, J. D. McCullen, P. Meystre, E. Vignes, H. Walther, “Optical bistability and mirror confinement induced by radiation pressure,” Phys. Rev. Lett. 51, 1550–1553 (1983). [CrossRef]
  7. P. Meystre, E. M. Wright, J. D. McCullen, E. Vignes, “Theory of radiation pressure-driven interferometers,” J. Opt. Soc. Am. B 2, 1830–1840 (1985). [CrossRef]
  8. N. Deruelle, P. Tourrenc, “The problem of the optical stability of a pendular Fabry–Perot,” in Gravitation, Geometry and Relativistic Physics (Springer, Berlin, 1984), pp. 232–237. [CrossRef]
  9. P. Tourrenc, N. Deruelle, “Effects of the time delays in a non-linear pendular Fabry–Perot,” Ann. Phys. Fr. 10, 241–252 (1985). [CrossRef]
  10. J. M. Aguirregabiria, L. L. Bel, “Delay-induced instability in a pendular Fabry–Perot cavity,” Phys. Rev. A 36, 3768–3770 (1987). [CrossRef] [PubMed]
  11. B. J. Meers, N. MacDonald, “Potential radiation pressure induced instabilities in cavity interferometers,” Phys. Rev. A 40, 3754–3763 (1989). [CrossRef] [PubMed]
  12. V. V. Kulagin, V. N. Rudenko, “Dynamics of a free mass interferometric gravitational antenna with small loss suspensions,” Phys. Lett. A 214, 123–126 (1996). [CrossRef]
  13. P. Hello, J.-Y. Vinet, “Analytical models of transient thermoelastic deformations of mirrors heated by high power cw laser beams,” J. Phys. (France) 51, 2243–2261 (1990). [CrossRef]
  14. S. V. Dhurandhar, P. Hello, B. S. Satyaprakash, J.-Y. Vinet, “Stability of giant Fabry–Perot cavities of interferometric gravitational-wave detectors,” Appl. Opt. 36, 5325–5334 (1997). [CrossRef] [PubMed]
  15. B. Caron, A. Dominjon, C. Drezen, R. Flaminio, X. Grave, R. Hermel, F. Marion, L. Massonet, C. Mehmel, R. Morand, B. Mours, V. Sanibale, M. Yvert, “A preliminary study of the locking of an interferometric for gravitational wave detection,” Astropart. Phys. 6, 245–256 (1997). [CrossRef]
  16. R. Flaminio, H. Heitmann, “Longitudinal control of an interferometer for the detection of gravitational waves,” Phys. Lett. A 214, 112–122 (1996). [CrossRef]
  17. C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, C. N. Man, P. T. Manh, A. Marraud, D. Shoemaker, J. Y. Vinet, F. Barone, L. Di Fiore, L. Milano, G. Russo, J. M. Aguirregabiria, H. Bel, J. P. Duruisseau, G. Le Denmat, Ph. Tourrenc, M. Capozzi, M. Longo, M. Lops, I. Pinto, G. Rotoli, T. Damour, S. Bonazzola, J. A. Marck, E. Gourgoulhon, L. E. Holloway, F. Fuligni, V. Iafolla, G. Natale, “The VIRGO project: a wide band antenna for gravitational wave detection,” Nucl. Instrum. Methods A 289, 518–525 (1990). [CrossRef]
  18. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gursel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  19. D. Shoemaker, LIGO team, MIT, Boston, Mass. 02139 (personal communication, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited