OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 15 — May. 20, 1998
  • pp: 3264–3267

Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation

Gregory N. De Brabander, Glenn Beheim, and Joseph T. Boyd  »View Author Affiliations

Applied Optics, Vol. 37, Issue 15, pp. 3264-3267 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A promising type of optical pressure sensor combines an integrated optical interferometer with a micromachined diaphragm on a shared silicon substrate. We have demonstrated a sensor of this type that uses an unbalanced Mach–Zehnder waveguide interferometer together with a broadband source to produce a spectrally encoded measurement. This spectral encoding mechanism is advantageous as it is not readily degraded by transmission through optical fibers. We have also demonstrated a means to obtain a temperature-compensated pressure measurement by interrogating both polarization eigenmodes of the interferometer.

© 1998 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.0130) Integrated optics : Integrated optics
(130.6010) Integrated optics : Sensors
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3120) Optical devices : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices

Original Manuscript: October 8, 1997
Revised Manuscript: February 2, 1998
Published: May 20, 1998

Gregory N. De Brabander, Glenn Beheim, and Joseph T. Boyd, "Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation," Appl. Opt. 37, 3264-3267 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Beheim, K. Fritsch, R. Poorman, “Fiber-linked interferometric pressure sensor,” Rev. Sci. Instrum. 58, 1655–1659 (1987). [CrossRef]
  2. R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–980 (1991). [CrossRef] [PubMed]
  3. G. Beheim, D. J. Anthan, “Fiber-optic photoelastic pressure sensor with fiber-loss compensation,” Opt. Lett. 12, 220–222 (1987). [CrossRef] [PubMed]
  4. D. Angelidis, P. Parsons, “Optical micromachined pressure sensor for aerospace applications,” Opt. Eng. 31, 1638–1641 (1992). [CrossRef]
  5. H. Unzeitig, H. Bartelt, “All-optical pressure sensor with temperature compensation on resonant PECVD silicon nitride microstructures,” Electron. Lett. 28, 400–402 (1992). [CrossRef]
  6. M. Ohkawa, M. Izutsu, T. Sueta, “Integrated optic pressure sensor on silicon substrate,” Appl. Opt. 28, 5153–5157 (1989). [CrossRef] [PubMed]
  7. G. N. De Brabander, J. T. Boyd, G. Beheim, “Integrated optical ring resonator with micromechanical diaphragm for pressure sensing,” IEEE Photon. Technol. Lett. 6, 671–673 (1994). [CrossRef]
  8. A. Vadekar, A. Nathan, W. P. Huang, “Analysis and design of an integrated silicon ARROW Mach–Zehnder micromechanical interferometer,” J. Lightwave Technol. 12, 157–162 (1994). [CrossRef]
  9. K. Fischer, J. Müller, R. Hoffmann, F. Wasse, D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor,” J. Lightwave Technol. 12, 163–169 (1994). [CrossRef]
  10. J. Geist, A. R. Schaefer, J. F. Song, Y. H. Wang, E. F. Zalewski, “An accurate value for the absorption coefficient of silicon at 633 nm,” J. Res. Natl. Inst. Stand. Technol. 95, 549–558 (1990). [CrossRef]
  11. W. Gleine, J. Müller, “Low-pressure chemical vapor deposition silicon–oxynitride films for integrated optics,” Appl. Opt. 31, 2036–2040 (1992). [CrossRef] [PubMed]
  12. Y. Lin, P. Hesketh, J. Schuster, “Finite-element analysis of thermal stresses in a silicon pressure sensor for various die-mount materials,” Sensors Actuators A 44, 145–149 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited