OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 15 — May. 20, 1998
  • pp: 3354–3367

Picosecond investigation of the collisional deactivation of OH A 2Σ+(v′ = 1, N′ = 4, 12) in an atmospheric-pressure flame

Paul Beaud, Peter P. Radi, Dieter Franzke, Hans-Martin Frey, Bernhard Mischler, Alexios-Paul Tzannis, and Thomas Gerber  »View Author Affiliations


Applied Optics, Vol. 37, Issue 15, pp. 3354-3367 (1998)
http://dx.doi.org/10.1364/AO.37.003354


View Full Text Article

Enhanced HTML    Acrobat PDF (318 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The collisional deactivation of the laser excited states A2Σ+(v′ = 1, N′ = 4, 12) of OH in a flame is studied by measurement of spectrally resolved fluorescence decays in the picosecond time domain. Quenching and depolarization rates, as well as vibrational energy-transfer (VET) and rotational energy-transfer (RET) rates are determined. An empirical model describes the temporal evolution of the quenching and VET rates that emerge from the rotational-state relaxation. Fitting this model to the measured 1–0 and 0–0 fluorescence decays yields the quenching and VET rates of the initially excited rotational state along with those that correspond to a rotationally equilibrated vibronic-state population. VET from the higher rotational state (N′ = 12) shows a tendency for resonant transitions to energetic close-lying levels. RET is investigated by analysis of the temporal evolution of the 1–1 emission band. The observed RET is well described by the energy-corrected sudden-approximation theory in conjunction with a power-gap law.

© 1998 Optical Society of America

OCIS Codes
(020.2070) Atomic and molecular physics : Effects of collisions
(260.2160) Physical optics : Energy transfer
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7150) Ultrafast optics : Ultrafast spectroscopy

History
Original Manuscript: October 1, 1997
Revised Manuscript: February 2, 1998
Published: May 20, 1998

Citation
Paul Beaud, Peter P. Radi, Dieter Franzke, Hans-Martin Frey, Bernhard Mischler, Alexios-Paul Tzannis, and Thomas Gerber, "Picosecond investigation of the collisional deactivation of OH A2Σ+(v′ = 1, N′ = 4, 12) in an atmospheric-pressure flame," Appl. Opt. 37, 3354-3367 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-15-3354


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1961). [CrossRef]
  2. I. L. Chidsey, D. R. Crosley, “Calculated rotational transition probabilities for the A– X system of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–199 (1980). [CrossRef]
  3. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).
  4. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” in Prog. Energy Combust. Sci. 21, 203–279 (1995).
  5. D. R. Crosley, “Rotational and translational effects in collisions of electronically excited diatomic hydrides,” J. Phys. Chem. 93, 6273–6282 (1989). [CrossRef]
  6. D. R. Crosley, “Semiquantitative laser induced fluorescence in flames,” Combust. Flame 78, 153–167 (1989). [CrossRef]
  7. R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence,” Appl. Phys. B 62, 583–599 (1996). [CrossRef]
  8. N. Bergano, P. Jaanimagi, M. Salour, “Picosecond laser-spectroscopy measurement of hydroxyl fluorescence in flames,” Opt. Lett. 8, 443–445 (1983). [CrossRef] [PubMed]
  9. R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987). [CrossRef]
  10. M. Köllner, P. Monkhouse, J. Wolfrum, “Time-resolved LIF of OH (A2Σ+, v′ = 1 and v′ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990). [CrossRef]
  11. A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+(v′ = 1) in atmospheric-pressure flames by picosecond excitation,” Appl. Phys. B 57, 85–87 (1993). [CrossRef]
  12. T. A. Reichardt, M. S. Klassen, G. B. King, N. M. Laurendeau, “Measurements of hydroxyl concentrations and lifetimes in laminar flames using picosecond time-resolved laser-induced fluorescence,” Appl. Opt. 35, 2125–2139 (1996). [CrossRef] [PubMed]
  13. R. Kienle, M. P. Lee, K. Kohse-Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).
  14. M. W. Sasnett, “Propagation of multimode laser beams—the M2 factor,” in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, Bristol, UK, 1989), pp. 132–142.
  15. R. N. Zare, “Molecular level-crossing spectroscopy,” J. Chem. Phys. 45, 4510–4518 (1966). [CrossRef]
  16. P. M. Doherty, D. R. Crosley, “Polarization of laser-induced fluorescence in OH in an atmospheric pressure flame,” Appl. Opt. 23, 713–721 (1984). [CrossRef] [PubMed]
  17. P. H. Paul, “Vibrational energy transfer and quenching of OH A2Σ+ (v′ = 1) measured at high temperatures in a shock tube,” J. Phys. Chem. 99, 8472–8476 (1995). [CrossRef]
  18. K. R. German, “Direct measurement of the radiative lifetimes of the A2Σ+(V′ = 0) states of OH and OD,” J. Chem. Phys. 62, 2584–2587 (1975);“Radiative and predissociative lifetimes of the v′ = 0, 1 and 2 levels of the A2Σ+ state of OH and OD,” J. Chem. Phys. 63, 5252–5255 (1975). [CrossRef]
  19. R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-level-dependent quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985). [CrossRef]
  20. K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The quantitative LIF determination of OH concentrations in low-pressure flames,” in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1988), pp. 1857–1866.
  21. J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH (A2Σ+) at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988). [CrossRef]
  22. M. P. Lee, R. Kienle, K. Kohse-Höinghaus, “Measurements of rotational energy transfer and quenching in OH A2Σ+, v′ = 0 at elevated temperature,” Appl. Phys. B 58, 447–457 (1994). [CrossRef]
  23. R. K. Lengel, D. R. Crosley, “Rotational-dependence of vibrational relaxation in A2Σ+ OH,” Chem. Phys. Lett. 32, 261–264 (1975). [CrossRef]
  24. R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. II. Vibrational,” J. Chem. Phys. 68, 5309–5324 (1978). [CrossRef]
  25. G. Smith, D. R. Crosley, “Vibrational energy transfer in A2Σ+ OH in flames,” Appl. Opt. 22, 1428–1430 (1983). [CrossRef] [PubMed]
  26. D. R. Crosley, G. P. Smith, “Rotational energy transfer and LIF temperature measurements,” Combust. Flame 44, 27–34 (1982). [CrossRef]
  27. D. Stepowski, M. J. Cotterau, “Time resolved study of rotational energy transfer in A2Σ+(v′ = 0) state of OH in a flame by laser induced fluorescence,” J. Chem. Phys. 74, 6674–6679 (1981). [CrossRef]
  28. A. T. Hartlieb, D. Markus, W. Kreutner, K. Kohse-Höinghaus, “Measurement of vibrational energy transfer of OH (A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997). [CrossRef]
  29. D. R. Crosley, SRI International, Menlo Park, Calif. 94025 (personal communication, 1997).
  30. R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ+(v′ = 1) by collisions with H2O in a low pressure flame,” Chem. Phys. Lett. 182, 623–631 (1991). [CrossRef]
  31. M. D. Smooke, J. A. Miller, R. J. Kee, “On the use of adaptive grids in numerically calculating adiabatic flame speeds,” in Numerical Methods in Laminar Flame Propagation, N. Peters, J. Warnatz, eds. (Vieweg, Wiesbaden, Germany, 1982), pp. 65–70.
  32. J. F. Grcar, R. J. Kee, M. D. Smooke, J. A. Miller, “A hybrid Newton/time-integration procedure for the solution of steady, laminar, one-dimensional, premixed flames,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1773–1779.
  33. J. Warnatz, “Rate coefficients in the C/H/O-system,” in Combustion Chemistry, W. C. Gardiner, ed. (Springer-Verlag, Berlin, 1984), pp. 197–360. [CrossRef]
  34. D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, “Evaluated kinetic data for combustion modeling,” J. Phys. Chem. 21, 411–734 (1992).
  35. P. W. Fairchild, G. P. Smith, D. R. Crosley, “Collisional quenching of A2Σ+ OH at elevated temperatures,” J. Chem. Phys. 79, 1795–1807 (1983). [CrossRef]
  36. J. W. Daily, “Use of rate equations to describe laser excitation in flames,” Appl. Opt. 16, 2322–2327 (1977). [CrossRef] [PubMed]
  37. C. Chan, J. W. Daily, “Laser excitation dynamics of OH in flames,” Appl. Opt. 19, 1357–1367 (1980). [CrossRef] [PubMed]
  38. T. A. Brunner, D. Pritchard, “Fitting laws for rotationally inelastic collisions,” Adv. Chem. Phys. 50, 589–641 (1982). [CrossRef]
  39. R. Goldflam, S. Green, D. J. Kouri, “Infinite order sudden approximation for rotational energy transfer in gaseous mixtures,” J. Chem. Phys. 67, 4149–4161 (1977). [CrossRef]
  40. M. H. Alexander, “Rotationally inelastic collisions between a diatomic molecule in a 2Σ+ electronic state and a structureless target,” J. Chem. Phys. 76, 3637–3645 (1982). [CrossRef]
  41. A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979). [CrossRef]
  42. T. A. Brunner, R. D. Driver, N. Smith, D. E. Pritchard, “Simple scaling law for rotational-energy transfer in Na2*–Xe collisions,” Phys. Rev. Lett. 41, 856–859 (1978). [CrossRef]
  43. J. C. Polanyi, K. B. Woodall, “Mechanism of rotational relaxation,” J. Chem. Phys. 56, 1563–1572 (1972). [CrossRef]
  44. I. Procaccia, R. D. Levine, “Cross sections for rotational energy transfer: an information-theoretic synthesis,” J. Chem. Phys. 64, 808–817 (1976). [CrossRef]
  45. R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH. I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977). [CrossRef]
  46. G. P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence in OH: transition probabilities and the influence of energy transfer,” in Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1511–1520. [CrossRef]
  47. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Time-resolved fluorescence investigation of rotational transfer in A2Σ+(v = 0) OH,” Appl. Opt. 25, 4086–4095 (1986). [CrossRef] [PubMed]
  48. J. Burris, J. Butler, T. McGee, W. Heaps, “Quenching and rotational energy transfer rates in the v′ = 0 manifold of OH (A2Σ+),” Chem. Phys. 151, 233–238 (1991). [CrossRef]
  49. R. Kienle, A. Jörg, K. Kohse-Höinghaus, “State-to-state rotational energy transfer in OH (A2Σ+, v′ = 1),” Appl. Phys. B 56, 249–258 (1993). [CrossRef]
  50. R. A. Sutherland, R. A. Anderson, “Radiative and predissociative lifetimes of the A2Σ+ state of OH,” J. Chem. Phys. 58, 1226–1234 (1973). [CrossRef]
  51. D. R. Yarkony, “A theoretical treatment of the predissociation of the individual rovibronic levels of OH/OD(A2Σ+),” J. Chem. Phys. 97, 1838–1849 (1992). [CrossRef]
  52. A. Jörg, U. Meier, K. Kohse-Höinghaus, “Rotational energy transfer in OH (A2Σ+, v′ = 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990). [CrossRef]
  53. A. Jörg, U. Meier, R. Kienle, K. Kohse-Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion relevant collision partners,” Appl. Phys. B 55, 305–310 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited