OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 16 — Jun. 1, 1998
  • pp: 3398–3400

Rayleigh range and the M 2 factor for Bessel–Gauss beams

R. M. Herman and T. A. Wiggins  »View Author Affiliations

Applied Optics, Vol. 37, Issue 16, pp. 3398-3400 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The M2 factor of Bessel–Gauss beams derived by Borghi and Santarsiero [ Opt. Lett. 22, 262–264 (1997)] is shown to predict the e-2 axial position rather than the half-intensity position of the on-axis intensity as the Rayleigh range divided by M2 for large values of k t w0. For small values of k t w0, the half-intensity axial position of the J0 Bessel–Gauss beam is the Rayleigh range divided by M2. Also, the ratio of the half-intensity lengths of J0 Bessel–Gauss and comparable Gaussian beams having the same radial size of their central regions is shown to be M2/1.3. For equal input powers and large k t w0, the values of peak intensity times effective range for J0 Bessel–Gauss beams is a constant and is a factor of 1.3 larger than the corresponding product for the comparable simple Gaussian beam.

© 1998 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(350.5500) Other areas of optics : Propagation

Original Manuscript: November 7, 1997
Revised Manuscript: February 9, 1998
Published: June 1, 1998

R. M. Herman and T. A. Wiggins, "Rayleigh range and the M2 factor for Bessel–Gauss beams," Appl. Opt. 37, 3398-3400 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971).
  2. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990). [CrossRef]
  3. T. F. Johnston, “M2 concept characterizes beam quality,” Laser Focus World173–184 (May1990).
  4. M. W. Sasnett, “Propagation of multimode laser beams—the M2 factor,” in Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, New York, 1989) pp. 132–142.
  5. A. Giesen, M. Morin, eds., Third International Workshop on Laser Beam and Optics Characterization, Proc. SPIE 2870 (1996).
  6. A. Parent, M. Morin, P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quant. Electron. 24, S1071–S1079 (1992). [CrossRef]
  7. V. Bagini, R. Borghi, F. Gori, A. Pacileo, M. Santarsiero, D. Ambrosini, G. Spagnolo, “Propagation of axially symmetric flattened Gaussian beams,” J. Opt. Soc. Am. A 13, 1385–1394 (1996). [CrossRef]
  8. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954);J. Durnin, J. Miceli, J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  9. R. M. Herman, T. A. Wiggins, “Apodization of diffractionless beams,” Appl. Opt. 31, 5913–5915 (1992). [CrossRef] [PubMed]
  10. F. Gori, G. Guattari, C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
  11. R. Borghi, M. Santarsiero, “M2 factor of Bessel–Gauss beams,” Opt. Lett. 22, 262–264 (1997). [CrossRef] [PubMed]
  12. V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, G. Spagnolo, “Generalized Bessel–Gauss beams,” J. Mod. Opt. 43, 1155–1166 (1996).
  13. R. M. Herman, T. A. Wiggins, “High-efficiency diffractionless beams of constant size and intensity,” Appl. Opt. 33, 7297–7306 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited