Rayleigh Range and the M^{2} Factor for Bessel–Gauss Beams
Applied Optics, Vol. 37, Issue 16, pp. 3398-3400 (1998)
http://dx.doi.org/10.1364/AO.37.003398
Acrobat PDF (145 KB)
Abstract
The M^{2} factor of Bessel–Gauss beams derived by Borghi and Santarsiero [Opt. Lett. 22, 262–264 (1997)] is shown to predict the e^{−2} axial position rather than the half-intensity position of the on-axis intensity as the Rayleigh range divided byM^{2} for large values of k_{t}w_{0}. For small values of k_{t}w_{0}, the half-intensity axial position of the J_{0} Bessel–Gauss beam is the Rayleigh range divided by M^{2}. Also, the ratio of the half-intensity lengths of J_{0} Bessel–Gauss and comparable Gaussian beams having the same radial size of their central regions is shown to be M^{2}/1.3. For equal input powers and largek_{t}w_{0}, the values of peak intensity times effective range for J_{0}Bessel–Gauss beams is a constant and is a factor of 1.3 larger than the corresponding product for the comparable simple Gaussianbeam.
© 1998 Optical Society of America
OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(350.5500) Other areas of optics : Propagation
Citation
R. M. Herman and T. A. Wiggins, "Rayleigh Range and the M^{2} Factor for Bessel–Gauss Beams," Appl. Opt. 37, 3398-3400 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-16-3398
Sort: Year | Journal | Reset
References
- A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971).
- A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2–14 (1990).
- T. F. Johnston, Jr., “M2 concept characterizes beam quality,” Laser Focus World 173–184 (May 1990).
- M. W. Sasnett, “Propagation of multimode laser beams—the M^{2} factor,” in Physics and Technology of Laser Resonators, D. R. Hall and P. E. Jackson, eds. (Hilger, New York, 1989) pp. 132–142.
- A. Giesen and M. Morin, eds., Third International Workshop on Laser Beam and Optics Characterization, Proc. SPIE 2870 (1996).
- A. Parent, M. Morin, and P. Lavigne, “Propagation of super-Gaussian field distributions,” Opt. Quant. Electron. 24, S1071–S1079 (1992).
- V. Bagini, R. Borghi, F. Gori, A. Pacileo, M. Santarsiero, D. Ambrosini, and G. Spagnolo, “Propagation of axially symmetric flattened Gaussian beams,” J. Opt. Soc. Am. A 13, 1385–1394 (1996).
- J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954); J. Durnin, J. Miceli, Jr., and J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
- R. M. Herman and T. A. Wiggins, “Apodization of diffractionless beams,” Appl. Opt. 31, 5913–5915 (1992).
- F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987).
- R. Borghi and M. Santarsiero, “M^{2} factor of Bessel–Gauss beams,” Opt. Lett. 22, 262–264 (1997).
- V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Spagnolo, “Generalized Bessel–Gauss beams,” J. Mod. Opt. 43, 1155–1166 (1996).
- R. M. Herman and T. A. Wiggins, “High-efficiency diffractionless beams of constant size and intensity,” Appl. Opt. 33, 7297–7306 (1994).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.