OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 16 — Jun. 1, 1998
  • pp: 3498–3505

Bound-abrasive polishers for optical glass

Birgit E. Gillman and Stephen D. Jacobs  »View Author Affiliations

Applied Optics, Vol. 37, Issue 16, pp. 3498-3505 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (536 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polishing abrasives that have been bound in a solid matrix can offer several potential advantages over loose-abrasive processes with pitch or polyurethane laps for finishing of optics. These advantages include polishing efficiency, temperature stability, cost of consumables, and compatibility with computer numerically controlled generating machines. Unfortunately, little has been published on bound-abrasive polishers, and very few commercially available products exist. We have developed several compositions and manufacturing techniques that show promise for polishing a variety of optical glasses. We establish the various criteria for a successful bound-abrasive polisher. The numerous variables to be considered in designing these polishers are identified, and the results of screening experiments are used to find successful compositions. Polishing experiments with bound abrasives in arrays of pellets, as ring tools, and as full-contact laps are described.

© 1998 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(240.5450) Optics at surfaces : Polishing

Original Manuscript: September 19, 1997
Revised Manuscript: January 9, 1998
Published: June 1, 1998

Birgit E. Gillman and Stephen D. Jacobs, "Bound-abrasive polishers for optical glass," Appl. Opt. 37, 3498-3505 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Lambropoulos, T. Fang, P. D. Funkenbusch, S. D. Jacobs, M. J. Cumbo, D. Golini, “Surface microroughness of optical glasses under deterministic microgrinding,” Appl. Opt. 35, 4448–4462 (1996). [CrossRef] [PubMed]
  2. J. C. Lambropoulos, S. D. Jacobs, B. E. Gillman, F. Yang, J. Ruckman, “Subsurface damage in microgrinding optical glasses,” in Laboratory for Laser Energetics, Review 73, DOE/SF/19460-212 (University of Rochester, Rochester, N.Y.), pp. 45–49.
  3. D. Golini, W. Czajkowski, “Microgrinding makes ultrasmooth optics fast,” Laser Focus World 28, 146–152 (1992).
  4. Our vendors include Scomac, Inc., 8629 Buffalo Road, Bergen, N.Y. 14416, and H & C Tool Supply, 235 Mt. Read Boulevard, Rochester, N.Y. 14611, a distributor for Norton Superabrasives.
  5. T. S. Izumitani, Optical Glass (American Institute of Physics, New York, 1986), Chap. 4, p. 91.
  6. M. J. Cumbo, D. Fairhurst, S. D. Jacobs, B. E. Puchebner, “Slurry particle size evolution during the polishing of optical glass,” Appl. Opt. 34, 3743–3755 (1995). [CrossRef] [PubMed]
  7. H. H. Karow, Fabrication Methods for Precision Optics (Wiley, New York, 1993), Chap. 5, p. 463.
  8. L. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 155–171 (1990). [CrossRef]
  9. G. W. Fynn, W. J. A. Powell, Cutting and Polishing Optical and Electronic Materials, 2nd ed. (Hilger, Bristol, 1988), Chap. 3, p. 83.
  10. N. J. Brown, “Optical polishing pitch,” Rep. UCRL-80301 (Lawrence Livermore National Laboratory, Livermore, Calif., 1977).
  11. M. Ando, M. Negishi, M. Takimoto, A. Deguchi, N. Nakamura, “Super-smooth polishing on aspherical surfaces,” Nanotechnology 6, 111–120 (1995). [CrossRef]
  12. A. P. Bogdanov, V. A. Dushkin, L. N. Mikhailova, A. A. Kuz’min, “Ion-beam shaping of high-precision optical surfaces by a small-diameter, program-positioned ion beam,” J. Opt. Technol. 61, 474–477 (1994).
  13. T. W. Drueding, S. C. Fawcett, S. R. Wilson, T. G. Bifano, “Ion beam figuring of small optical components,” Opt. Eng. 34, 3565–3571 (1995). [CrossRef]
  14. D. Golini, S. D. Jacobs, W. I. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. A. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 1997), pp. 251–274.
  15. A. P. Denisenko, V. V. Rogov, V. V. Guzhov, Yu. D. Filatov, V. T. Chalyi, V. C. Cherednik, G. I. Shtilvaser, V. I. Mel’nik, E. F. Pyatak, O. D. Muzyira, “Mass for fabrication of polishing tools,” Russian patentSU 1263513 A1 (15October1986), .
  16. V. V. Rogov, Yu. D. Filatov, A. P. Denisenko, N. D. Rublev, V. V. Guzhov, “Efficiency of tools having a bound abrasive for the polishing of glass,” Sov. J. Opt. Technol. 56, 33–35 (1989).
  17. V. V. Rogov, “Tribochemical mechanism of the glass polishing process by the ‘Akvapol’ tool,” Sov. J. Opt. Technol. 58, 366–369 (1991).
  18. Aquapol product literature, Institute for Superhard Materials, Academy of Sciences of the Ukranian SSR, 2 Avtozavodskaja str., 254074, Kiev, Ukraine.
  19. V. M. Al’tshuller, S. A. Gerasimov, V. P. Pushechnikov, “Mechanical finishing of optical components without using free abrasive,” J. Opt. Technol. 61, 470–471 (1994).
  20. S. I. Zakharov, O. V. Tapinskaya, “Unique features of polishing with an annular tool,” Sov. J. Opt. Technol. 58, 519–521 (1992).
  21. N. L. Kudryavtseva, L. G. Malofeeva, G. G. Melent’eva, N. E. Khar’kov, G. S. Khodakov, “Physical, chemical and technological properties of commercially produced polirit,” Sov. J. Opt. Technol. 44, 347–350 (1978).
  22. N. L. Kudryavtseva, N. E. Khar’kov, G. S. Khodakov, “Polisher compositions based on compounds of rare-earth elements,” Sov. J. Opt. Technol. 50, 378–381 (1983).
  23. M. Yu. Konyukhov, I. M. Medvedeva, N. A. Nechaeva, “Study of the physicochemical and technological parameters of domestically produced polishing powders,” Sov. J. Opt. Technol. 58, 798–800 (1992).
  24. Transelco CeRite 415K, CeRite 4251, and Rhone Poulenc Cerox 1663 distributed by Universal Photonics, Inc., 495 West John Street, Hicksville, N.Y. 11801.
  25. W. Ng, B. E. Puchebner, S. D. Jacobs, “Evaluation of bound abrasive media for fabrication of ring tool polishers,” in Optical Fabrication and Testing Workshop, Vol. 13 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 114–116.
  26. Epo-Tek B9131-2, two-component power laser adhesive, Epoxy Technology Inc., 14 Fortune Drive, Billerica, Mass. 01821.
  27. Plasma Alumina, low-density, microporous, hollow aluminum oxide spheres, 6-μm diameter, P.Q. Corp., Cedar Grove Road, Conshohocken, Pa. 19428.
  28. Ohara Corp., 50 Columbia Street, Somerville, N.J. 08876-3519.
  29. Schott Glass Technologies, Inc., 400 York Avenue, Durea, Pa. 18642.
  30. Hoya Optics, Inc., 3400 Edison Way, Fremont, Calif. 94538.
  31. Fused Silica Code 7940, Corning Inc., Corning N.Y. 14831.
  32. Schott Optical Glass Catalog, Edition 1989, Hoya Optical Glass Catalog, Edition 1989, and Corning Fused Silica Product Literature, 1997.
  33. R. Strasbaugh (Model 6DE-DC-1), 426 Main Street North, Woodbury, Conn. 06798.
  34. Opticam® SX (renamed OptiPro 150), OptiPro Systems Inc., 369 Route 104, Ontario, N.Y. 14519.
  35. Dow Corning RTV 3110, distributed by Wolcott-Park, 1700 Hudson Avenue, Rochester, N.Y. 14617.
  36. Catalog number 21008-089, VWR Scientific Products, 1310 Goshen Parkway, West Chester, Pa. 19380.
  37. Buehler Isomet low-speed saw, Buehler Ltd., 41 Waukegan Road, Lake Bluff, Ill. 60044.
  38. Dow Corning RTV 3110, distributed by Wolcott-Park, 1700 Hudson Avenue, Rochester, N.Y. 14617.
  39. ReleasaGen, paintable ester mold release spray, IMS Inc., 10373 Stafford Road, Chagrin Falls, Ohio 44023.
  40. MX0485-7 Menthanol GR (anhydrous), EM Science, Cherry Hill, Gibbstown, N.J. 08027.
  41. B. E. Puchebner, S. D. Jacobs, “Development of new bound abrasive polishers for final finishing of optical glasses,” in Optical Manufacturing and Testing, V. J. Doherty, H. P. Stahl, eds., Proc. SPIE2536, 256–264 (1995). [CrossRef]
  42. N. L. Kudryavtseva, L. G. Malofeeva, G. G. Melent’eva, G. S. Khodakov, “Factors that reduce the polishing ability of a polirit suspension,” Sov. J. Opt. Technol. 46, 478–480 (1979).
  43. Universal Photonics Product Catalog, 495 West John Street, Hicksville, N.Y. 11801.
  44. Measurements performed on a Horiba LA 900 Laser Scattering Particle Analyzer, Horiba Instruments, Inc., 17671 Armstrong Avenue, Irvine, Calif. 92714.
  45. B. E. Gillman, B. M. Reed, M. A. Atwood, J. L. Ruckman, D. J. Quesnel, T. T. Ochinero, S. D. Jacobs, “Application of coolants in deterministic microgrinding of glass,” in Optical Manufacturing and Testing II, H. P. Stahl, ed., Proc. SPIE3134, 198–204 (1997). [CrossRef]
  46. Microgrit Abrasives Corp., 720 Southampton Road, Westfield, Mass. 01086.
  47. NewView 100 white-light interferometer, 0.25 mm × 0.35 mm, areal, 20× Mirau, Zygo Corp., Laurel Brook Road, P.O. Box 448, Middlefield, Conn. 06455. Each roughness measurement reported is an average of measurements made at three sites over part surface, avoiding center and edges.
  48. LOH K-40 Coolant, LOH Optical Machinery, Inc., N116W1811 Morse Drive, Germantown, Wis. 53022.
  49. Mark IV xp Phase Shifting Interferometer, Zygo Corp., Laurel Brook Road, P.O. Box 448, Middlefield, CT 06455. Using a high-pass, fast Fourier transform filter, the software options allow a line scan to be taken around the part at a fixed radius from the part center (14 mm), defined as a radial scan.
  50. Moore Tool Co., 800 Union Avenue, Bridgeport, Conn. 06607.
  51. Model, Inc./Integrated Endoscopy, 10 Hammond Drive, Irvine, Calif. 92618.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited