OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 17 — Jun. 10, 1998
  • pp: 3717–3725

Modeling of Scattering and Depolarizing Electro-Optic Devices. I. Characterization of Lanthanum-Modified Lead Zirconate Titanate

Paul E. Shames, Pang Chen Sun, and Yeshaiahu Fainman  »View Author Affiliations


Applied Optics, Vol. 37, Issue 17, pp. 3717-3725 (1998)
http://dx.doi.org/10.1364/AO.37.003717


View Full Text Article

Acrobat PDF (246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a new method of modeling electro-optic (EO) devices, such as lanthanum-modified lead zirconate titanate polarization modulators, that resolves two deficiencies of current methods: (i) the inclusion of depolarization effects resulting from scattering and (ii) saturation of the EO response at strong electric-field strengths. Our approach to modeling depolarization is based on describing the transmitted optical field by superposition of a deterministic polarized wave and a scattered, randomly polarized, stochastic wave. Corresponding Jones matrices are used to derive a Mueller matrix to describe the wave propagation in scattering and depolarizing EO media accurately. A few simple optical measurements can be used to find the nonlinear behavior of the EO phase function, which is shown to describe accurately the material’s EO behavior for weak and strong applied electric fields.

© 1998 Optical Society of America

OCIS Codes
(080.2730) Geometric optics : Matrix methods in paraxial optics
(160.2100) Materials : Electro-optical materials
(190.3270) Nonlinear optics : Kerr effect
(190.5890) Nonlinear optics : Scattering, stimulated
(260.2130) Physical optics : Ellipsometry and polarimetry

Citation
Paul E. Shames, Pang Chen Sun, and Yeshaiahu Fainman, "Modeling of Scattering and Depolarizing Electro-Optic Devices. I. Characterization of Lanthanum-Modified Lead Zirconate Titanate," Appl. Opt. 37, 3717-3725 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-17-3717


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Haertling, “Electro-optic ceramics and devices,” Electronic Ceramics: Properties, Devices, and Applications, L. Levinson, ed. (Marcel Dekker, New York, 1988), pp. 371–492.
  2. J. Thomas and Y. Fainman, “Programmable diffractive optical elements using a multichannel lanthanum-modified lead zirconate titanate phase modulator,” Opt. Lett. 20, 1510–1512 (1995).
  3. Q. W. Song, X. M. Wang, and R. Bussjager, “Lanthanum-modified lead zirconate titanate ceramic wafer-based electro-optic dynamic diverging lens,” Opt. Lett. 21, 242–244 (1996).
  4. T. Utsunomiya, “Optical switch using PLZT ceramics,” Ferroelectrics 109, 235–240 (1990).
  5. J. T. Cutchen, J. O. Harris, and G. R. Laguna, “PLZT electrooptic shutters: applications,” Appl. Opt. 14, 1866–1873 (1975).
  6. P. Shames, P. C. Sun, and Y. Fainman, “Modeling and optimization of electro-optic phase modulator,” in Physics and Simulation of Optoelectronic Devices IV, W. W. Chow and M. Osinski, eds., Proc. SPIE 2693, 787–796 (1996).
  7. C. E. Land, “Variable birefringence, light scattering, and surface-deformation effects in PLZT ceramics,” Ferroelectrics 7, 45–51 (1974).
  8. E. E. Klotin’sh, Yu. Ya. Kotleris, and Ya. A. Seglin’sh, “Geometrical optics of an electrically controlled phase plate made of PLZT-10 ferroelectric ceramic,” Avtometriya 6, 68–72 (1984).
  9. K. Tanaka, M. Yamaguchi, H. Seto, M. Murata, and K. Wakino, “Analyses of PLZT electrooptic shutter and shutter array,” Jap. J. Appl. Phys. 24, 177–182 (1985).
  10. M. Title and S. H. Lee, “Modeling and characterization of embedded electrode performance in transverse electro-optic modulators,” Appl. Opt. 29, 85–98 (1990).
  11. Y. Wu, T. C. Chen, and H. Y. Chen, “Model of electro-optic effects by Green’s function and summary representation: applications to bulk and thin film PLZT displays and spatial light modulators,” in Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics, M. Liu, A. Safari, A. Kingon, and G. Haertling, eds. (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 600–603.
  12. A. E. Kapenieks and M. Ozolinsh, “Distortion of phase modulation by PLZT ceramics electrically controlled retardation plates,” Optik (Stuttgart) 63, 333–339 (1983).
  13. D. H. Goldstein, “PLZT modulator characterization,” Opt. Eng. 34, 1589–1592 (1995).
  14. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 5.
  15. B. Mansoorian, “Design and characterization of flip-chip bonded Si/PLZT smart pixels,” Ph.D. dissertation (University of California, San Diego, La Jolla, Calif., 1994), Chap. 2.
  16. E. T. Keve, “Structure–property relationships in PLZT ceramic materials,” Ferroelectrics 10, 169–174 (1976).
  17. G. H. Haertling and C. E. Land, “Hot-pressed (Pb, La)(Zr, Ti)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1–10 (1971).
  18. M. Ivey, “Birefringent light scattering in PLZT ceramics,” IEEE Trans. Ultrason. Ferroelec. Frequen. Contr. 38, 579–584 (1991).
  19. R. A. Chipman, “The mechanics of polarization ray tracing,” in Polarization Analysis and Measurement, D. H. Goldstein and R. A. Chipman, eds., Proc. SPIE 1746, 62–75 (1992).
  20. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1989), pp. 554–555.
  21. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1987), Chap. 2.
  22. A. E. Kapenieks, “Mueller matrix determination for the transparent ferroelectric PLZT ceramics in the transverse electric field,” Lat. PSR Zinat. Akad. Vestis Fiz. Teh. Zinat. Ser. 6, 61–65 (1980).
  23. F. W. Byron and R. W. Fuller, Mathematics of Classical and Quantum Physics (Dover, New York, 1970), Chap. 3.
  24. K. Kim, L. Mandel, and E. Wolf, “Relationship between Jones and Mueller matrices for random media,” J. Opt. Soc. Am. A 4, 433–437 (1987).
  25. R. M. A. Azzam, “Propagation of partially polarized light through anisotropic media with or without depolarization: a differential 4 × 4 matrix calculus,” J. Opt. Soc. Am. 68, 1756–1767 (1978).
  26. J. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 8.
  27. S. M. F. Nee, “The effects of incoherent scattering on ellipsometry,” in Polarization Analysis and Measurement, D. H. Goldstein and R. A. Chipman, eds., Proc. SPIE 1746, 119–127 (1992).
  28. R. A. Chipman, “Polarimetry,” in Handbook in Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 22.
  29. C. Brosseau, “Mueller matrix analysis of light depolarization by a linear optical medium,” Opt. Commun. 131, 229–235 (1996).
  30. R. M. A. Azzam, “Ellipsometry,” in Handbook in Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 27.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited