Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modeling of scattering and depolarizing electro-optic devices. II. Device simulation

Not Accessible

Your library or personal account may give you access

Abstract

We describe a simple method for performing accurate computer simulation and modeling of arbitrary-geometry electro-optic (EO) devices. We use a material EO model that includes the effects of scattering and depolarization as well as the change in the index of refraction. Finite-element analysis is used to determine the electrostatic field distribution for EO device designs. Attenuation of the transmitted light intensity as a result of scattering is modeled as an exponential function, and the intensity of transmitted depolarized light is shown to be a function of the scattering intensity. The total optical transmittance is determined by integration of these values over all the elements in the path of the propagating light. Lanthanum-modified lead zirconate titanate-based surface-electrode and transverse-electrode EO devices are designed and fabricated. Their experimentally measured performance is found to be in excellent agreement with our computer-simulation results.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Modeling of Scattering and Depolarizing Electro-Optic Devices. I. Characterization of Lanthanum-Modified Lead Zirconate Titanate

Paul E. Shames, Pang Chen Sun, and Yeshaiahu Fainman
Appl. Opt. 37(17) 3717-3725 (1998)

Electro-optic beam-steering device based on a lanthanum-modified lead zirconate titanate ceramic wafer

Qi Wang Song, Xu-Ming Wang, Rebecca Bussjager, and Joseph Osman
Appl. Opt. 35(17) 3155-3162 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.