OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 17 — Jun. 10, 1998
  • pp: 3735–3745

Design considerations of stacked multilayers of diffractive optical elements for optical network units in optical subscriber-network applications

Hironori Sasaki, Ikuo Fukuzaki, Yoichiro Katsuki, and Takeshi Kamijoh  »View Author Affiliations

Applied Optics, Vol. 37, Issue 17, pp. 3735-3745 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (537 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The detailed design process and experimental results of stacked multilayer diffractive optical elements are reported for an optical network unit used in optical subscriber-network applications. The optical network unit accepts two incoming light beams of 1.3- and 1.55-μm wavelengths through a single-mode optical fiber. A laser diode is also placed for bidirectional communications. The optical network unit consists of five diffractive optical elements that perform the following functions: collimation of incoming beams, focusing of the outgoing 1.55-μm beam, 3-dB splitting of the 1.3-μm beam, focusing of the 1.3-μm beam onto the photodiode, and collimation of the light emitted from a laser diode. Possible cost reductions as a result of mass production and the ease of alignment of the stacked diffractive optical elements could be ideal for constructing low-cost optical network units.

© 1998 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(060.2330) Fiber optics and optical communications : Fiber optics communications
(130.0250) Integrated optics : Optoelectronics
(220.4830) Optical design and fabrication : Systems design
(250.5300) Optoelectronics : Photonic integrated circuits

Hironori Sasaki, Ikuo Fukuzaki, Yoichiro Katsuki, and Takeshi Kamijoh, "Design Considerations of Stacked Multilayers of Diffractive Optical Elements for Optical Network Units in Optical Subscriber-Network Applications," Appl. Opt. 37, 3735-3745 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Shimada, K. Hashimoto, and K. Okada, “Fiber-optic subscriber loop system for integrated services: the strategy for introducing fibers into the subscriber network,” J. Lightwave Technol. LT-5, 1667–1675 (1987). [CrossRef]
  2. N. Shibata and I. Yamashita, “System and component technologies toward full access network opticalization,” IEICE Trans. Electron. E80-C, 3–8 (1997).
  3. J. R. Stern, “Passive optical local networks for telephony applications and beyond,” Electron. Lett. 23, 1255–1257 (1987). [CrossRef]
  4. Y. Wakui, “The fiber-optic subscriber network in Japan,” IEEE Commun. Mag. 32, 56–63 (February 1994). [CrossRef]
  5. Y. Mochida, “Technologies for local-access fibering,” IEEE Commun. Mag. 32, 64–73 (February 1994). [CrossRef]
  6. J. Yoshida, S. Sekine, H. Terui, T. Kominato, K. Yoshino, N. Tsuzuki, M. Kobayashi, and K. Okada, “A compact optical module with a 1.3-μm/1.5-μm WDM circuit for fiber optic subscriber systems,” IEICE Trans. Electron. E75-B, 880–885 (1992).
  7. H. Sasaki, I. Fukuzaki, Y. Katsuki, and T. Kamijoh, “Miniaturized free-space wavelength-division multiplexing photonic circuit for passive double star network systems,” Electron. Lett. 33, 1577–1579 (1997). [CrossRef]
  8. K. Miyamoto, “The phase Fresnel lens,” J. Opt. Soc. of Am. 51, 17–20 (1961). [CrossRef]
  9. L. d’Auria, J. P. Huignard, A. M. Roy, and E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972). [CrossRef]
  10. G. J. Swanson and W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989). [CrossRef]
  11. J. Fan, B. Catanzaro, F. Kiamilev, S. C. Esener, and S. H. Lee, “Architecture of an integrated computer-aided design system for optoelectronics,” Opt. Eng. 33, 1571–1580 (1994). [CrossRef]
  12. D. Zaleta, S. Patra, V. Ozguz, J. Ma, and S. H. Lee, “Tolerancing of board-level free-space optical interconnects,” Appl. Opt. 35, 1317–1327 (1996). [CrossRef] [PubMed]
  13. code v is a registered trademark of Optical Research Associates, 3280 East Foothill Boulevard, Pasadena, Calif. 91107.
  14. K. S. Urquhart, S. H. Lee, C. C. Guest, M. R. Feldman, and H. Farhoosh, “Computer aided design of computer generated holograms for electron beam fabrication,” Appl. Opt. 28, 3387–3396 (1989). [CrossRef] [PubMed]
  15. W. H. Welch, J. E. Morris, and M. R. Feldman, “Iterative discrete on-axis encoding of radially symmetric computer-generated holograms,” J. Opt. Soc. Am. A 10, 1729–1738 (1993). [CrossRef]
  16. J. Fan, D. Zaleta, K. S. Urquhart, and S. H. Lee, “Efficient encoding algorithms for computer-aided design of diffractive optical elements by the use of electron-beam fabrication,” Appl. Opt. 34, 2522–2533 (1995). [CrossRef] [PubMed]
  17. M. Kuittinen and H. P. Herzig, “Encoding of efficient diffractive microlenses,” Opt. Lett. 20, 2156–2158 (1995). [CrossRef] [PubMed]
  18. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Sys. Tech. J. 44, 455–494 (1965).
  19. Y. Li and E. Wolf, “Focal shift in focused truncated Gaussian beams,” Opt. Commun. 42, 151–156 (1982). [CrossRef]
  20. P. Belland and J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982). [CrossRef] [PubMed]
  21. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, and H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992). [CrossRef]
  22. N. Uchida, Y. Yamada, Y. Hibino, Y. Suzuki, and N. Ishihara, “Low-cost hybrid WDM module consisting of a spot-size convertor integrated laser diode and a waveguide photodiode on a PLC platform for access network systems,” IEICE Trans. Electron. E80-C, 88–97 (1997).
  23. R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating shape,” J. Opt. Soc. Am. 68, 806–809 (1978). [CrossRef]
  24. G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” MIT Tech. Rep. 854 (Massachusetts Institute of Technology, Cambridge, Mass., 1989).
  25. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Tech. Rep. 914 (Massachusetts Institute of Technology, Cambridge, Mass., 1991).
  26. D. A. Pommet, M. G. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited