OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 17 — Jun. 10, 1998
  • pp: 3746–3755

Wavelength-division multiplexing free-space optical interconnect networks for massively parallel processing systems

Mikihiro Kajita, Kenichi Kasahara, Tae Jin Kim, David T. Neilson, Ichiro Ogura, Ian Redmond, and Eugen Schenfeld  »View Author Affiliations

Applied Optics, Vol. 37, Issue 17, pp. 3746-3755 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wavelength-division multiplexing (WDM) techniques provide many advantages for building optical interconnect networks for massively parallel processing (MPP) systems. A design for a 1024-channel network for MPP systems based on the interconnection-cached network with vertical-cavity surface-emitting laser (VCSEL) arrays with one wavelength is described. We then show how a WDM version with four different wavelengths can increase the channel density. We also show how a WDM system can reduce the fan-in loss by a factor of 4. All the VCSEL’s in each array are of the same wavelength, while different arrays use different wavelengths. We describe our experimental WDM subsystem containing four VCSEL arrays, operating at wavelengths of 843, 950, 970, and 980 nm, and three different WDM filters for multiplexing–demultiplexing. We present the operational results of the subsystem at 1 Gbit/s per channel.

© 1998 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4510) Fiber optics and optical communications : Optical communications
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects

Mikihiro Kajita, Kenichi Kasahara, Tae Jin Kim, David T. Neilson, Ichiro Ogura, Ian Redmond, and Eugen Schenfeld, "Wavelength-division multiplexing free-space optical interconnect networks for massively parallel processing systems," Appl. Opt. 37, 3746-3755 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, “Optics as an interconnect technology,” Optical Processing and Computing, H. H. Arsenault, T. Szoplik, and B. Macukow, eds. (Academic, New York, 1989), Chap. 1. [CrossRef]
  2. J. W. Parker, “Optical interconnection for advanced processor systems: A review of the ESPRIT II OLIVES Program,” IEEE J. Lightwave Technol. 9, 1764–1773 (1991). [CrossRef]
  3. R. A. Nordin, “A system perspective on digital interconnection technology,” IEEE J. Lightwave Technol. 10, 811–827 (1992). [CrossRef]
  4. Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nti, D. K. Lweis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, H. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995). [CrossRef]
  5. E. Schenfeld, “Massively parallel processing with optical interconnections: what can be, should be and must not be done by optics,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 16–18.
  6. L. Rudolph, D. Feitelson, and E. Schenfeld, “An optical interconnection network with 3-D layout and distributed control,” in Optical Interconnections and Networks, H. Bartelt, ed., Proc. SPIE 1281, 54–65 (1990). [CrossRef]
  7. A. Barak and E. Schenfeld, “Embedding classical communication topologies in the OPAM architecture,” in Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing (IEEE Computer Society, Los Alamitos, Calif., 1991) pp. 482–485. [CrossRef]
  8. V. Gupta and E. Schenfeld, “A heuristic approach for embedding communication patterns in an interconnection cached parallel processing network,” in Proceedings of the IPPS’93 (IEEE Computer Society, Los Alamitos, Calif., 1991), pp. 291–298.
  9. Y.-D. Lyuu and E. Schenfeld, “Parallel graph contraction with applications to a reconfigurable parallel architecture,” in Proceedings of the Twenty-third International Conference on Parallel Processing (ICPP) (CRC, Boca Raton, Fla., 1994), Vol. III, pp. 258–265.
  10. V. Gupta and E. Schenfeld, “Performance analysis of a synchronous, circuit-switched interconnection cached network,” in Proceedings of the Eighth ACM International Conference on Supercomputiong (ICS’94) (Association for Computing Machinery, New York, 1994), pp. 246–255. [CrossRef]
  11. Y.-D. Lyuu and E. Schenfeld, “MICA: a mapped interconnection-cached architecture,” in Proceedings of the Fifth IEEE Symposium on the Frontiers of Massively Parallel Computation (IEEE Computer Society, Los Alamitos, Calif., 1995), pp. 80–89.
  12. A. A. Sawchuk and B. K. Jenkins, “Dynamic optical interconnections for parallel processors,” in Optical Computing, J. A. Neff, ed., Proc. SPIE 625, 143–153 (1986).
  13. T. M. Pinkston and J. W. Goodman, “Design of an optical reconfigurable shared bus–hypercube interconnect,” Appl. Opt. 33, 1434–1443 (1994). [CrossRef] [PubMed]
  14. T. Sakano, T. Matsumoto, and K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system: COSINE-III,” Appl. Opt. 34, 1815–1822 (1995). [CrossRef] [PubMed]
  15. T. H. Szymanski and S. Hinton, “Reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996). [CrossRef] [PubMed]
  16. Y. Li, T. Wang, and R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronic crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996). [CrossRef] [PubMed]
  17. S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, and T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996). [CrossRef] [PubMed]
  18. M. Kajita, K. Kasahara, T. J. Kim, I. Ogura, I. Redmond, and E. Schenfeld, “Free-space wavelength division multiplexing optical interconnections for massively parallel processing systems,” Tech. Rep. 95–196 (NEC Research Institute, Princeton, N.J., December 1995).
  19. J. W. Goodman, “Fan-in and fan-out with optical interconnection,” Opt. Acta 32, 1489–1496 (1985). [CrossRef]
  20. H. A. Macleod, Thin-film Optical Filters (McGraw-Hill, New York, 1986). [CrossRef]
  21. R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, and J. L. Jewell, “Progress in planarized vertical-cavity surface-emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gooking, ed., Proc. SPIE 1562, 149–159 (1991). [CrossRef]
  22. T. Numai, K. Kurihara, K. Kühn, H. Kosaka, I. Ogura, M. Kajita, H. Saito, and K. Kasahara, “Control of light-output polarization for surface-emitting-laser type device by strained active layer grown on misoriented substrate,” IEEE J. Quantum Electron. 31, 636–642 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited