OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 18 — Jun. 20, 1998
  • pp: 3804–3824

Ground-Based Differential Absorption Lidar for Water-Vapor and Temperature Profiling: Development and Specifications of a High-Performance Laser Transmitter

Volker Wulfmeyer  »View Author Affiliations


Applied Optics, Vol. 37, Issue 18, pp. 3804-3824 (1998)
http://dx.doi.org/10.1364/AO.37.003804


View Full Text Article

Acrobat PDF (2590 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An all-solid-state laser transmitter for a water-vapor and temperature differential absorption lidar (DIAL) system in the near infrared is introduced. The laser system is based on a master–slave configuration. As the slave laser a Q-switched unidirectional alexandrite ring laser is used, which is injection seeded by the master laser, a cw Ti:sapphire ring laser. It is demonstrated that this laser system has, what is to my knowledge, the highest frequency stability (15 MHz rms), narrowest bandwidth (<40 MHz), and highest spectral purity (>99.99%) of all the laser transmitters developed to date in the near infrared. These specifications fulfill the requirements for water-vapor measurements with an error caused by laser properties of <5% and temperature measurements with an error caused by laser properties of <1 K in the whole troposphere. The specifications are maintained during long-term operation in the field. The single-mode operation of this laser system makes the narrow-band detection of the DIAL backscatter signal possible. Thus the system has the potential to be used for accurate temperature measurements and for simultaneous DIAL and Doppler wind measurements.

© 1998 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3560) Lasers and laser optics : Lasers, ring
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3580) Lasers and laser optics : Lasers, solid-state
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar

Citation
Volker Wulfmeyer, "Ground-Based Differential Absorption Lidar for Water-Vapor and Temperature Profiling: Development and Specifications of a High-Performance Laser Transmitter," Appl. Opt. 37, 3804-3824 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-18-3804


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
  2. E. E. Remsberg and L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978).
  3. G. Mégie and R. T. Menzies, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173–1183 (1980).
  4. C. Cahen and G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
  5. S. Ismail and E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
  6. W. B. Grant, “Differential absorption and Raman lidar for water vapor profile measurements: a review,” Opt. Eng. 30, 40–48 (1991).
  7. J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
  8. L. Bengtsson, “Problems of using satellite information in numerical weather prediction,” in Proceedings of the Technical Conference on Use of Data from Meteorological Satellites, B. Batrick, ed., European Space Agency publication SP-143 (European Space Research and Technology Center, Noordwijk, The Netherlands, 1979), pp. 87–100.
  9. J. B. Mason, “Lidar measurements of temperature: a new approach,” Appl. Opt. 14, 76–78 (1975).
  10. C. L. Korb and C. Y. Weng, “A theoretical study of a two-wavelength lidar technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
  11. F. A. Theopold and J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Oceanic Technol. 10, 165–179 (1993).
  12. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).
  13. V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, and S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995).
  14. V. Wulfmeyer and J. Bösenberg, “Water vapor DIAL measurements using an injection-seeded alexandrite ring laser,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 215–217.
  15. V. Wulfmeyer and J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996).
  16. “Report of the first workshop of the World Climate Research Program/Global Energy and Water Cycle Experiment Water Vapour Project (GVaP),” 12–15 November 1996, World Climate Research Programme Informal Report No. 8 (World Meteorological Organization, Geneva, Switzerland, 1997).
  17. V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, and F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.
  18. R. M. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” in Proceedings of the Fourth Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.
  19. C. Werner and H. Herrmann, “Lidar measurements of the vertical absolute humidity distribution in the boundary layer,” J. Appl. Meteorol. 20, 476–481 (1981).
  20. V. V. Zuev, V. E. Zuev, Y. S. Makushin, V. N. Marichev, and A. A. Mitsel, “Laser sounding of atmospheric humidity: experiment,” Appl. Opt. 22, 3742–3746 (1983).
  21. E. R. Murray, R. D. Hake, J. E. Van der Laan, and J. G. Hawley, “Atmospheric water vapor measurement with a 10 micrometer DIAL system,” Appl. Phys. Lett. 28, 542–543 (1976).
  22. P. W. Baker, “Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar,” Appl. Opt. 22, 2257–2264 (1983).
  23. R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23, 2545–2553 (1984).
  24. W. B. Grant, J. S. Margolis, A. M. Brothers, and D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
  25. A. W. Brewer, B. J. Rye, R. M. Hardesty, and W. L. Eberhard, “Performance characteristics of a compact, RF-excited, MOPA CO2 Doppler lidar,” presented at the Ninth Conference on Coherent Laser Radar, 23–27 June 1997, Linkoping, Sweden, Abstract, pp. 148–150.
  26. E. V. Browell, T. D. Wilkerson, and T. J. McIlrath, “Water vapor differential absorption lidar development and evaluation,” Appl. Opt. 18, 3474–3482 (1979).
  27. C. Cahen, G. Mégie, and P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
  28. J. Bösenberg, “A DIAL system for high resolution water vapor measurements in the troposphere,” in Laser and Optical Remote Sensing: Instrumentation and Techniques, Vol. 18 of 1987 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1987), pp. 22–25.
  29. G. Ehret, C. Kiemle, W. Renger, and G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993).
  30. J. Bösenberg, “A differential absorption lidar system for high resolution water vapor measurements in the troposphere,” Report No. 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991).
  31. N. Menyuk and D. K. Killinger, “Atmospheric remote sensing of water vapor, HCl, and CH4 using a continuously tunable Co:MgF2 laser,” Appl. Opt. 26, 3061–3065 (1987).
  32. S. Cha, K. P. Chan, and D. K. Killinger, “Tunable 2.1-μm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles,” Appl. Opt. 30, 3938–3943 (1991).
  33. D. Bruneau, H. Cazeneuve, C. Loth, and J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991).
  34. N. S. Higdon, E. V. Browell, P. Ponsardin, B. E. Grossmann, C. F. Butler, T. H. Chyba, M. N. Mayo, R. J. Allen, A. W. Heuser, W. B. Grant, S. Ismail, S. D. Mayor, and A. F. Carter, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994).
  35. P. Ponsardin, N. S. Higdon, B. E. Grossmann, and E. V. Browell, “Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system,” Appl. Opt. 33, 6439–6450 (1994).
  36. P. Quaglia, “Etude et réalisation du lidar aéroporté pour la mesure de la vapeur d’eau,” Ph.D. dissertation (University of Paris VI, Paris, France, 1995).
  37. D. Bruneau, T. A. des Lions, P. Quaglia, and J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950 (1994).
  38. D. Bruneau, Service d’Aéronomie du Centre National de la Recherche Scientifique, 75252 Paris, France (personal communication, 1996).
  39. T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, and E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.
  40. T. H. Chyba, P. Ponsardin, and E. V. Browell, “Alexandrite laser injection-seeded by an external cavity laser diode for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 53–55.
  41. E. V. Browell and S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214.
  42. A. S. Moore, Jr., K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, Jr., I. W. Jones, C. W. Antill, Jr., E. V. Browell, and S. Ismail, “Development of the Lidar Atmospheric Sensing Instrument (LASE): an advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.
  43. S. A. Kooi, S. Ismail, E. V. Browell, W. M. Hall, M. B. Clayton, and V. G. Brackett, “Real-time and post-mission analysis of the Lidar Atmospheric Sensing Experiment (LASE) data,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E20, p. 53.
  44. G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58, 2226–2237 (1987).
  45. H. S. Lee and A. Notari, “Narrow-band alexandrite laser for DIAL and other lidar systems,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, paper 26PB1, pp. 271–274.
  46. C. R. Prasad, G. K. Schwemmer, A. Notari, and J. Famiglietti, “Measurement of spectral purity of an injection seeded alexandrite ring laser for a DIAL temperature lidar,” presented at the 17th International Laser Radar Conference, Sendai, Japan, 1994, paper 26PB20, pp. 329–332.
  47. S. W. Henderson, P. J. Suni, C. P. Hale, S. M. Hannon, R. J. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
  48. C. J. Grund, “High resolution Doppler lidar measurements of wind and turbulence,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, Germany, 1996), pp. 235–238.
  49. St. Schmitz, “Entwicklung eines schmalbandigen und durchstimmbaren Alexandrit-Lasers für ein mobiles Na-Temperatur-Lidar,” Ph.D. dissertation (University of Bonn, Bonn, Germany, 1994).
  50. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–132 (1986).
  51. P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
  52. F. Jansen, “Stabilisierung eines Titan-Saphir-Lasers in einem DIAL-System für Wasserdampfmessungen,” diploma thesis (Technical College Hamburg-Bergedorf, Hamburg, Germany, 1997).
  53. W. Vassen, C. Zimmermann, R. Kallenbach, and T. W. Hänsch, “A frequency-stabilized titanium sapphire laser for high-resolution spectroscopy,” Opt. Commun. 75, 435–440 (1990).
  54. A. Burneau and B. Humbert, “Temperature effects on a tilted birefringent filter in a tunable laser: a limitation for Raman spectroscopy,” J. Appl. Phys. 66, 5702–5706 (1989).
  55. J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4, 182–183 (1979).
  56. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302–1315 (1980).
  57. K. P. Driedger, W. Krause, and H. Weber, “Average refractive power of an alexandrite laser rod,” Opt. Commun. 57, 403–406 (1986).
  58. J. P. Lörtscher, J. Steffen, and G. Herziger, “Dynamic stable resonators: a design procedure,” Opt. Quantum Electron. 7, 505–514 (1975).
  59. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell. Syst. Tech. J. 44, 455–494 (1965).
  60. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986).
  61. V. Magni, “Multielement stable resonators containing a variable lens,” J. Opt. Soc. Am. A 4, 1962–1969 (1987).
  62. S. DeSilvestri, P. Laporta, and V. Magni, “Rod thermal lensing effects in solid-state laser ring resonators,” Opt. Commun. 65, 373–376 (1988).
  63. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  64. R. Hauck, H. P. Kortz, and H. Weber, “Misalignment sensitivity of optical resonators,” Appl. Opt. 19, 598–601 (1980).
  65. J. E. Murray and W. H. Lowdermilk, “Nd:YAG regenerative amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
  66. Y. K. Park, G. Giuliani, and R. L. Byer, “Single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding,” IEEE J. Quantum Electron. QE-20, 117–125 (1984).
  67. L. A. Rahn, “Feedback stabilization of an injection-seeded Nd:YAG laser,” Appl. Opt. 24, 940–942 (1985).
  68. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991).
  69. S. W. Henderson, E. H. Yuen, and E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986).
  70. T. D. Raymond and A. V. Smith, “Injection-seeded titanium-doped-sapphire laser,” Opt. Lett. 16, 33–35 (1991).
  71. Ch. E. Hamilton, “Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision,” Opt. Lett. 17, 728–730 (1992).
  72. G. Y. Yin, A. Kasapi, M. Jain, and A. Merriman, “Tunable pulsed SLM Ti:sapphire laser injection-seeded outside the gain peak region,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 118.
  73. S. Schmitz, U. von Zahn, J. C. Walling, F. G. Fisanick, and D. F. Heller, “Diode injection-seeded, solid-state laser sources for sodium lidar and guidestars,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 245.
  74. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, and R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
  75. J. Altmann, R. Baumgart, and C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–998 (1981).
  76. N. P. Barnes and J. C. Barnes, “Injection seeding I: Theory,” IEEE J. Quantum Electron. 29, 2670–2683 (1993).
  77. J. C. Barnes, N. P. Barnes, L. G. Wang, and W. Edwards, “Injection seeding II: Ti:Al2O3 experiments,” IEEE J. Quantum Electron. 29, 2684–2692 (1993).
  78. S. Lehmann and J. Bösenberg, “A water vapour DIAL system using diode pumped Nd:YAG lasers,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, Germany, 1996), pp. 309–312.
  79. C. Nagasawa and M. Abo, “An injection seeded flash-lamp pumped Ti:sapphire laser for potassium lidar and water vapor DIAL,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E31, p. 58.
  80. J. Yu, M. Douard, B. Vezin, P. Rambaldi, and J. P. Wolf, “Injection seeding of a flashlamp pumped Ti:sapphire laser for lidar applications,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 439–442.
  81. J. Machol, R. M. Hardesty, B. Rye, and C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.
  82. G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, and J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, abstract E30, p. 58.
  83. A. Fix and G. Ehret, “Injection seeded optical parametric oscillator system for water vapor DIAL measurements,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 313–316.
  84. T. D. Gardiner, M. J. T. Milton, F. Molero, and P. T. Woods, “Infrared DIAL measurements with an injection-seeded OPO,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 451–454.
  85. A. J. Henderson, S. Mathur, G. R. Prasad, S. X. Li, and S. Lee, “Water vapor measurements with use of OPO-based differential absorption lidar,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 187–188.
  86. K. D. Zhang, J. Lewis, and E. Margalith, “Diode-seeded single-longitudinal-mode OPO for remote sensing (DIAL) of water vapor,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 188.
  87. T. D. Wilkerson and J. A. McKay, “Implications of new alexandrite ring laser technology for spaceborne lidar (aerosol backscatter, water vapor, Doppler winds),” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 217–220.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited