OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 18 — Jun. 20, 1998
  • pp: 3825–3844

Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications

Volker Wulfmeyer and Jens Bösenberg  »View Author Affiliations


Applied Optics, Vol. 37, Issue 18, pp. 3825-3844 (1998)
http://dx.doi.org/10.1364/AO.37.003825


View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The accuracy and the resolution of water-vapor measurements by use of the ground-based differential absorption lidar (DIAL) system of the Max-Planck-Institute (MPI) are determined. A theoretical analysis, intercomparisons with radiosondes, and measurements in high-altitude clouds allow the conclusion that, with the MPI DIAL system, water-vapor measurements with a systematic error of <5% in the whole troposphere can be performed. Special emphasis is laid on the outstanding daytime and nighttime performance of the DIAL system in the lower troposphere. With a time resolution of 1 min the statistical error varies between 0.05 g/m3 in the near range using 75 m and—depending on the meteorological conditions—approximately 0.25 g/m3 at 2 km using 150-m vertical resolution. When the eddy correlation method is applied, this accuracy and resolution are sufficient to determine water-vapor flux profiles in the convective boundary layer with a statistical error of <10% in each data point to approximately 1700 m. The results have contributed to the fact that the DIAL method has finally won recognition as an excellent tool for tropospheric research, in particular for boundary layer research and as a calibration standard for radiosondes and satellites.

© 1998 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.3920) Atmospheric and oceanic optics : Meteorology
(010.7030) Atmospheric and oceanic optics : Troposphere
(010.7340) Atmospheric and oceanic optics : Water
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: September 3, 1997
Revised Manuscript: February 23, 1998
Published: June 20, 1998

Citation
Volker Wulfmeyer and Jens Bösenberg, "Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications," Appl. Opt. 37, 3825-3844 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-18-3825


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998). [CrossRef]
  2. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998). [CrossRef]
  3. R. M. Schotland, “Errors in the lidar measurement of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974). [CrossRef]
  4. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989). [CrossRef] [PubMed]
  5. W. B. Grant, “Differential absorption and Raman lidar for water vapor profile measurements: a review,” Opt. Eng. 30, 40–48 (1991). [CrossRef]
  6. V. Wulfmeyer, J. Bösenberg, S. Lehmann, C. Senff, S. Schmitz, “Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar,” Opt. Lett. 20, 638–640 (1995). [CrossRef] [PubMed]
  7. V. Wulfmeyer, J. Bösenberg, “Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar,” Opt. Lett. 21, 1150–1152 (1996). [CrossRef] [PubMed]
  8. S. Lehmann, V. Wulfmeyer, J. Bösenberg, “Time-dependent attenuator for dynamic range reduction of lidar signals,” Appl. Opt. 36, 3469–3474 (1997). [CrossRef] [PubMed]
  9. D. Bruneau, H. Cazeneuve, C. Loth, J. Pelon, “Double-pulse dual-wavelength alexandrite laser for atmospheric water vapor measurement,” Appl. Opt. 30, 3930–3937 (1991). [CrossRef] [PubMed]
  10. G. Ehret, C. Kiemle, W. Renger, G. Simmet, “Airborne remote sensing of tropospheric water vapor with a near infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993). [CrossRef] [PubMed]
  11. E. V. Browell, S. Ismail, “First lidar measurements of water vapor and aerosols from a high-altitude aircraft,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 212–214.
  12. E. V. Browell, S. Ismail, W. M. Hall, A. S. Moore, S. A. Kooi, V. G. Brackett, M. B. Clayton, J. D. W. Barrick, F. J. Schmidlin, N. S. Higdon, S. H. Melfi, D. Whiteman, “LASE validation experiment,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 289–295.
  13. C. Senff, “Messung des Wasserdampfflusses in der konvektiven Grenzschicht mit DIAL und RADAR-RASS,” Ph.D. dissertation (University of Hamburg, Hamburg, Germany, 1993).
  14. C. Senff, J. Bösenberg, G. Peters, “Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar RASS,” J. Atmos. Oceanic Technol. 11, 85–93 (1994). [CrossRef]
  15. A. Giez, “Einsatz eines Wasserdampf-DIALs und eines Heterodyn-Wind-Lidars zur Messung des Vertikalflusses von Wasserdampf in einer konvektiven Grenzschicht,” Ph.D. dissertation (University of Munich, Munich, Germany, 1996).
  16. “Report of the first workshop of the World Climate Research Program/Global Energy and Water Cycle Experiment Water Vapour Project (GVaP),” 12–15 November 1996, World Climate Research Programme Informal Report No. 8 (World Meteorological Organization, Geneva, Switzerland, 1997).
  17. V. Wulfmeyer, F. Jansen, J. Bösenberg, “The transportable water-vapor DIAL of the MPI: performance analysis during the first field experiment,” Field Campaign LINEX96/1, in Arbeitsergebnisse der Abteilung Forschung No. 39 (German Weather Service, Offenbach am Main, Germany, 1996), pp. 13–24.
  18. V. Wulfmeyer, L. Hirsch, G. Peters, J. Bösenberg, F. Jansen, F. Göktaş, “Water-vapor differential absorption lidar measurements during the Baltic Sea Experiment 1996,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 107–109.
  19. V. Wulfmeyer, F. Jansen, J. Bösenberg, L. Hirsch, G. Peters, “Investigation of turbulent processes in the lower troposphere with water-vapor DIAL and Radar-RASS,” J. Atmos. Sci. (to be published).
  20. A. Ansmann, “Errors in ground based water-vapor DIAL measurements due to Doppler-broadened Rayleigh backscattering,” Appl. Opt. 24, 3476–3480 (1985). [CrossRef] [PubMed]
  21. A. Ansmann, J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987). [CrossRef] [PubMed]
  22. B. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720-nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989). [CrossRef]
  23. B. Grossmann, E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989). [CrossRef]
  24. C. Cahen, G. Mégie, “A spectral limitation of the range resolved differential absorption lidar technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981). [CrossRef]
  25. E. V. Browell, S. Ismail, B. E. Grossmann, “Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region,” Appl. Opt. 30, 1517–1524 (1991). [CrossRef] [PubMed]
  26. J. Harms, W. Lahmann, C. Weitkamp, “Geometrical compression of lidar return signals,” Appl. Opt. 17, 1131–1135 (1978). [CrossRef] [PubMed]
  27. J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979). [CrossRef] [PubMed]
  28. C. L. Korb, B. M. Gentry, S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976–5983 (1997). [CrossRef] [PubMed]
  29. T. Schaberl, “Messung des Ozonflusses in der unteren Troposphäre mit einem neuen Ozon-DIAL-System und einem Radar-RASS,” Ph.D. dissertation (University of Hamburg, Hamburg, Germany, 1995).
  30. F. J. Schmidlin, “WMO international radiosonde intercomparison, phase II final report, 1985,” Instruments and Observing Methods Report No. 29, WMO/TD No. 312 (World Meteorological Organization, Geneva, Switzerland, 1989).
  31. J. C. Larsen, E. W. Chiou, W. P. Chu, M. P. McCormick, L. R. McMaster, S. Oltmans, D. Rind, “A comparison of the stratospheric aerosol and gas experiment II tropospheric water vapor to radiosonde measurements,” J. Geophys. Res. 98(D3), 4897–4917 (1993). [CrossRef]
  32. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. C. O’Starr, “A comparison of water vapour measurements made by Raman lidar and radiosondes,” J. Atmos. Oceanic Technol. 12, 1177–1195 (1995). [CrossRef]
  33. J. Bösenberg, A. Ansmann, S. Elouragini, P. H. Flamant, K. H. Klappheck, H. Linné, C. Loth, L. Menenger, W. Michaelis, P. Moerl, J. Pelon, W. Renger, M. Riebesell, C. Senff, P.-Y. Thro, U. Wandinger, C. Weitkamp, “Measurements with lidar systems during the International Cirrus Experiment 1989,” Report No. 60 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1990).
  34. S. H. Melfi, D. N. Whiteman, R. Ferrare, “Atmospheric moisture structure revealed by Raman lidar,” Opt. Photon. News (16–18 October1991).
  35. E. E. Remsberg, L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978). [CrossRef] [PubMed]
  36. A. Ansmann, “Bodengebundene DIAL-Wasserdampfmessung: Berücksichtigung der Dopplerverbreiterung der Laserlinie durch Rayleighrückstreuung,” Ph.D. dissertation (University of Hamburg, Hamburg, Germany, 1989).
  37. E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 1. comparison with 1986 FIRE IFO measurements,” J. Geophys. Res. 99, 10,421–10,442 (1994). [CrossRef]
  38. E. J. Jensen, O. B. Toon, D. L. Westphal, S. Kinne, A. J. Heymsfield, “Microphysical modeling of cirrus, 2. sensitivity studies,” J. Geophys. Res. 99, 10,443–10,454 (1994). [CrossRef]
  39. Y. Zhao, R. M. Hardesty, M. J. Post, “Multibeam transmitter for signal dynamic range reduction in incoherent lidar systems,” Appl. Opt. 31, 7623–7632 (1992). [CrossRef] [PubMed]
  40. J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994). [CrossRef]
  41. C. Senff, J. Bösenberg, G. Peters, T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and Radar-RASS: a case study,” Contrib. Atmos. Phys. 69, 161–176 (1996).
  42. V. Wulfmeyer, “Investigations of humidity skewness and variance profiles in the convective boundary layer and comparison with large eddy simulation model results,” J. Atmos. Sci. (to be published).
  43. C. Cahen, G. Mégie, P. Flamant, “Lidar monitoring of the water vapor cycle in the troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982). [CrossRef]
  44. V. V. Zuev, V. E. Zuev, Y. S. Makushin, V. N. Marichev, A. A. Mitsel, “Laser sounding of atmospheric humidity: experiment,” Appl. Opt. 22, 3742–3746 (1983). [CrossRef] [PubMed]
  45. J. Bösenberg, “A differential absorption lidar system for high resolution water vapor measurements in the troposphere,” Report No. 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991).
  46. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969). [CrossRef]
  47. J. A. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970). [CrossRef]
  48. J. Goldsmith, Sandia National Laboratories, Livermore, Calif. (personal communication, 1997).
  49. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1992). [CrossRef]
  50. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992). [CrossRef] [PubMed]
  51. D. Renault, R. Capitini, “Boundary layer water vapor probing with a solar-blind Raman lidar: meteorological observations and prospects,” J. Atmos. Oceanic Technol. 5, 585–601 (1988). [CrossRef]
  52. W. E. Eichinger, D. I. Cooper, F. L. Archuletta, D. Hof, D. B. Holtkamp, R. R. Karl, C. R. Quick, J. Tiee, “Development of a scanning, solar-blind, water Raman lidar,” Appl. Opt. 33, 3923–3932 (1994). [CrossRef] [PubMed]
  53. S. E. Bisson, J. E. M. Goldsmith, “Measurements of daytime and upper tropospheric water vapor profiles by Raman lidar,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), 220–223.
  54. J. E. M. Goldsmith, S. E. Bisson, “Raman lidar profiling of atmospheric water vapor,” in Second Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing, IEEE Conference Proceedings (IEEE, Piscataway, N.J., 1995), 387–389.
  55. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. (to be published).
  56. R. Ferrare, Goddard Space Flight Center, Greenbelt, Md. (personal communication, 1997).
  57. St. Schmitz, “Entwicklung eines schmalbandigen und durchstimmbaren Alexandrit-Lasers für ein mobiles Na-Temperatur-Lidar,” Ph.D. dissertation (University of Bonn, Bonn, Germany, 1994).
  58. R. C. Sam, J. Yeh, K. R. Leslie, W. R. Radoport, “Design and performance of a 250 Hz alexandrite laser,” IEEE J. Quantum Electron. 24, 1151–1166 (1988). [CrossRef]
  59. S. Lehmann, J. Bösenberg, “All-solid-state diode-pumped water vapor DIAL and wind lidar for latent heat flux measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 74–76.
  60. J. Machol, R. M. Hardesty, B. Rye, C. Grund, “Proposed compact, eye-safe lidar for measuring atmospheric water vapor,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, St. A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 321–324.
  61. G. C. Papen, P. D. Dragic, K. J. Beernik, L. M. Little, J. J. Coleman, “An all diode pumped master oscillator power amplifier for water vapor DIAL systems,” presented at the 18th International Laser Radar Conference, Berlin, Germany, 1996, Abstract E30, p. 58.
  62. T. H. Chyba, P. Ponsardin, N. S. Higdon, R. J. DeYoung, E. V. Browell, “Alexandrite laser transmitter development for airborne water vapor DIAL measurements,” in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 47–49.
  63. M. J. Kavaya, S. W. Henderson, E. C. Russell, R. M. Huffaker, R. G. Frehlich, “Monte Carlo computer simulations of ground-based and space-based coherent DIAL water vapor profiling,” Appl. Opt. 28, 840–850 (1989). [CrossRef] [PubMed]
  64. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plain Climate Study Site,” in Optical Remote Sensing of the Atmosphere, Vol. 7 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 164–166.
  65. World Climate Research Program, “Scientific plan for the Global Energy and Water Cycle Experiment,” WMO/TD. No. 376 (World Meteorological Organization, Geneva, Switzerland, 1990).
  66. D. O’Starr, S. H. Melfi, Eds., “Implementation plan for the pilot phase of the Global Water Vapor Project,” International Global Energy and Water Cycle Experiment Project Office Publication Series No. 2 (International GEWEX Project Office, Columbia, Md., 1991).
  67. World Meteorological Organization, “Implementation plan for the GEWEX continental-scale international project (GCIP),” WMO/TD No. 461 (World Meteorological Organization, Geneva, Switzerland, 1992).
  68. “Baltic Sea Experiment (BALTEX) initial implementation plan,” International Baltex Secretariat Publication No. 2 (GKSS Research Center, Geesthacht, Germany, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited