OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 18 — Jun. 20, 1998
  • pp: 3845–3860

Ground-Based Differential Absorption Lidar for Water-Vapor and Temperature Profiling: Methodology

Jens Bösenberg  »View Author Affiliations


Applied Optics, Vol. 37, Issue 18, pp. 3845-3860 (1998)
http://dx.doi.org/10.1364/AO.37.003845


View Full Text Article

Acrobat PDF (327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comprehensive formulation of the differential absorption lidar (DIAL) methodology is presented that explicitly includes details of the spectral distributions of both the transmitted and the backscattered light. The method is important for high-accuracy water-vapor retrievals and in particular for temperature measurements. Probability estimates of the error that is due to Doppler-broadened Rayleigh scattering based on an extended experimental data set are presented, as is an analytical treatment of errors that are due to averaging in the nonlinear retrieval scheme. System performance requirements are derived that show that water-vapor retrievals with an accuracy of better than 5% and temperature retrievals with an accuracy of better than 1 K in the entire troposphere are feasible if the error that results from Rayleigh–Doppler correction can be avoided. A modification of the DIAL technique, high-spectral-resolution DIAL avoids errors that are due to Doppler-broadened Rayleigh backscatter and permits simultaneous water-vapor and wind measurements with the same system.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar
(290.5870) Scattering : Scattering, Rayleigh

Citation
Jens Bösenberg, "Ground-Based Differential Absorption Lidar for Water-Vapor and Temperature Profiling: Methodology," Appl. Opt. 37, 3845-3860 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-18-3845


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Emanuel, D. Raymond, A. Betts, L. Bosart, C. Bretherton, K. Droegemeier, B. Farrell, J. M. Fritsch, R. Houze, M. LeMone, D. Lilly, R. Rotunno, M. Shapiro, R. Smith, and A. Thorpe, “Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF,” Bull. Am. Meteorol. Soc. 76, 1194–1208 (1995).
  2. Study Group on GEWEX, “Concept of the Global Energy and Water Cycle Experiment,” World Climate Research Program Rep. 215 (World Meteorological Organization, Geneva, Switzerland, 1988).
  3. “Report of the first workshop of the World Climate Research Program/Global Energy and Water Cycle Experiment Water Vapour Project (GVap),” 12–15 November 1996, World Climate Research Programme Informal Report No. 8 (World Meteorological Organization, Geneva, Switzerland, 1997).
  4. D. O’C. Starr and S. H. Melfi, “The role of water-vapor in climate,” NASA Conf. Publ. 3120 (NASA, Washington, D.C., 1991).
  5. C. Senff, J. Bösenberg, and G. Peters, “Measurement of water-vapor flux profiles in the convective boundary layer with lidar and radar-RASS,” J. Atmos. Ocean. Technol. 11, 85–93 (1994).
  6. C. Senff, J. Bösenberg, G. Peters, and T. Schaberl, “Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and RADAR-RASS: a case study,” Contrib. Atmos. Physics 69, 161–176 (1996).
  7. E. R. Westwater, “Ground-based microwave remote sensing of meteorological variables,” in Atmospheric Remote Sensing by Microwave Radiometer, M. Janssen, ed., (Wiley, New York, 1993), Chap. 4, pp. 145–213.
  8. W. L. Smith, H. E. Revercomb, H. B. Howell, H. L. Huang, R. O. Knuteson, E. W. Koenig, D. D. LaPorte, S. Silverman, L. A. Sromovsky, and H. M. Woolf, “GHIS—The GOES high-resolution interferometer sounder,” J. Appl. Meteorol. 29, 1189–1204 (1990).
  9. A. Chedin, M. T. Chahine, and N. A. Scott, High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies (Springer-Verlag, Berlin, 1993).
  10. R. D. Schotland, “Some observations of the vertical profile of water-vapor by means of a ground based optical radar,” in Proceedings of the International Symposium on Remote Sensing of Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 271–273.
  11. W. B. Grant, “Differential absorption and Raman lidar for water-vapor profile measurements: a review,” Opt. Eng. 30, 40–48 (1991).
  12. D. Bruneau, T. A. des Lions, P. Quaglia, and J. Pelon, “Injection-seeded pulsed alexandrite laser for differential absorption lidar application,” Appl. Opt. 33, 3941–3950 (1994).
  13. P. Quaglia, D. Bruneau, A. Abiche, M. Lopez, F. Fassina, J. P. Marcovici, P. Genau, T. Danguy, B. Brient, B. Romand, C. Loth, M. Meissonier, P. Flamant, and J. Pelon, “The airborne water-vapor lidar LEANDRE II: design, realization, tests and first validations,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 297–300.
  14. G. Ehret, C. Kiemle, W. Renger, and G. Simmet, “Airborne remote sensing of tropospheric water-vapor with a near-infrared differential absorption lidar system,” Appl. Opt. 32, 4534–4551 (1993).
  15. A. S. Moore, Jr., K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, Jr., I. W. Jones, C. W. Antill, Jr., E. V. Browell, and S. Ismail, “Development of the Lidar Atmospheric Sensing Experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 281–288.
  16. J. Bösenberg, “A differential absorption lidar system for high resolution water-vapor measurements in the troposphere,” Rep. 71 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1991).
  17. A. Ansmann, “Errors in ground-based water-vapor DIAL-measurements due to Doppler-broadened Rayleigh backscattering,” Appl. Opt. 24, 3476–3480 (1985).
  18. A. Ansmann and J. Bösenberg, “Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water-vapor in the troposphere,” Appl. Opt. 26, 3026–3032 (1987).
  19. J. B. Mason, “LIDAR measurements of temperature: a new approach,” Appl. Opt. 14, 76–78 (1975).
  20. G. Mégie, “Mesure de la pression et de la température atmosphériques par absorption différentielle lidar: influence de la largeur d’émission laser,” Appl. Opt. 19, 34–43 (1980).
  21. C. L. Korb and C. Y. Weng, “A theoretical study of a two-wavelength LIDAR technique for the measurement of atmospheric temperature profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
  22. F. A. Theopold and J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment,” J. Atmos. Ocean. Technol. 10, 165–179 (1993).
  23. R. M. Schotland, “Errors in the lidar measurements of atmospheric gases by differential absorption,” J. Appl. Meteorol. 13, 71–77 (1974).
  24. R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).
  25. S. Ismail and E. V. Browell, “Airborne and spaceborne lidar measurements of water-vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3615 (1989).
  26. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
  27. R. T. H. Collis and P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976).
  28. F. A. Theopold, “Bestimmung des Temperaturprofils der Troposphäre mit einem Zwei-Frequenz-Lidar,” Ph.D. dissertation (Universität Hamburg, Hamburg, Germany, 1990).
  29. D. K. Killinger and N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37–45 (1987).
  30. M. J. T. Milton and P. T. Woods, “Pulse averaging methods for a laser remote monitoring system using atmospheric backscatter,” Appl. Opt. 26, 2598–2603 (1987).
  31. W. Staehr, W. Lahmann, and C. Weitkamp, “Range-resolved differential absorption lidar: optimization of range and sensitivity,” Appl. Opt. 24, 1950–1956 (1985).
  32. W. B. Grant, A. M. Brothers, and J. R. Bogan, “Differential absorption lidar averaging,” Appl. Opt. 27, 1934–1938 (1988).
  33. J. Bösenberg and F. Theopold, “Evaluation of DIAL measurements in presence of signal noise,” in Proceedings of the 14th International Laser Radar Conference, V. Cammelli and V. M. Sacco, eds., (Instituto di Ricerca sulle Onde Elettromagnetiche/Consiglio Nazionale delle Ricerche, Firenze, Italy, 1988), pp. 209–211.
  34. W. M. Davenport and W. L. Root, Random Signals and Noise (McGraw-Hill, New York, 1958).
  35. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, and E. M. Patterson, “Orbiting lidar simulations. 1. Aerosol and cloud measurements by an independent-wavelength technique,” Appl. Opt. 21, 1541–1553 (1982).
  36. R. S. Eng, P. L. Kelley, A. Mooradian, A. R. Calawa, and T. C. Harman, “Tunable laser measurements of water-vapor transitions in the vicinity of 5 μm,” Chem. Phys. Lett. 19, 524–528 (1973).
  37. R. S. Eng, P. L. Kelley, A. R. Calawa, T. C. Harman, and K. W. Nill, “Tunable diode laser measurements of water vapour absorption line parameters,” Mol. Phys. 28, 653–664 (1974).
  38. J. Bösenberg, “Measurements of the pressure shift of water-vapor absorption lines by simultaneous photoacoustic spectroscopy,” Appl. Opt. 24, 3531–3534 (1985).
  39. B. Grossmann and E. V. Browell, “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” J. Mol. Spectrosc. 138, 562–595 (1989).
  40. K. J. Ritter and T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
  41. B. Grossmann and E. V. Browell, “Spectroscopy of water-vapor in the 720 nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989).
  42. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953).
  43. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961).
  44. S. G. Rautian and I. I. Sobel’Man, “The effect of collisions on the Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967).
  45. United States Committee on Extension to the Standard Atmosphere, “U.S. Standard Atmosphere 1976” (National Oceanic and Atmospheric Administration, Washington, D.C., 1976).
  46. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
  47. V. Wulfmeyer and J. Bösenberg, “Single mode solid state water-vapor and temperature DIAL system: measurements of water-vapor profiles in the troposphere,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 305–308.
  48. Y. Zhao, T. K. Lea, and R. M. Schotland, “Correction function for the lidar equation and some techniques for incoherent CO2 lidar data reduction,” Appl. Opt. 27, 2730–2740 (1988).
  49. F. A. Theopold, C. Weitkamp, and W. Michaelis, “BELINDA: broadband emission lidar with narrowband determination of absorption. A new concept for measuring water-vapor and temperature profiles,” in 16th International Laser Radar Conference, M. P. McCormick, ed., NASA Conf. Publ. 3158 (NASA, Washington, D.C., 1992).
  50. V. Wulfmeyer, “Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter,” Appl. Opt. 37, 3804–3824 (1998).
  51. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37, 3825–3844 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited