OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 18 — Jun. 20, 1998
  • pp: 3923–3941

Evaluation of the Applicability of Solar and Lamp Radiometric Calibrations of a Precision Sun Photometer Operating Between 300 and 1025 nm

Beat Schmid, Paul R. Spyak, Stuart F. Biggar, Christoph Wehrli, Jörg Sekler, Thomas Ingold, Christian Mätzler, and Niklaus Kämpfer  »View Author Affiliations

Applied Optics, Vol. 37, Issue 18, pp. 3923-3941 (1998)

View Full Text Article

Acrobat PDF (329 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Over a period of 3 years a precision Sun photometer (SPM) operating between 300 and 1025 nm was calibrated four times at three different high-mountain sites in Switzerland, Germany, and the United States by means of the Langley-plot technique. We found that for atmospheric window wavelengths the total error (2ς—statistical plus systematic errors) of the calibration constants V0 (λ), the SPM voltage in the absence of any attenuating atmosphere, can be kept below 1.6% in the UV-A and blue, 0.9% in the mid-visible, and 0.6% in the near-infrared spectral region. For SPM channels within strong water-vapor or ozone absorption bands a modified Langley-plot technique was used to determine V0 (λ) with a lower accuracy. Within the same period of time, we calibrated the SPM five times using irradiance standard lamps in the optical labs of the Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, Switzerland, and of the Remote Sensing Group of the Optical Sciences Center, University of Arizona, Tucson, Arizona. The lab calibration method requires knowledge of the extraterrestrial spectral irradiance. When we refer the standard lamp results to the World Radiation Center extraterrestrial solar irradiance spectrum, they agree with the Langley results within 2% at 6 of 13 SPM wavelengths. The largest disagreement (4.4%) is found for the channel centered at 610 nm. The results of these intercomparisons change significantly when the lamp results are referred to two different extraterrestrial solar irradiance spectra that have become recently available.

© 1998 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5240) Instrumentation, measurement, and metrology : Photometry
(120.5630) Instrumentation, measurement, and metrology : Radiometry

Beat Schmid, Paul R. Spyak, Stuart F. Biggar, Christoph Wehrli, Jörg Sekler, Thomas Ingold, Christian Mätzler, and Niklaus Kämpfer, "Evaluation of the Applicability of Solar and Lamp Radiometric Calibrations of a Precision Sun Photometer Operating Between 300 and 1025 nm," Appl. Opt. 37, 3923-3941 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. World Meteorological Organization, “Report on the measurements of atmospheric turbidity in BAPMoN,” WMO/GAW 94, obtainable as WMO/TD 659 (World Meteorological Organization, Geneva, Switzerland, 1993).
  2. G. E. Shaw, “Error analysis of multi-wavelength Sun photometry,” Pageoph. 114, 1–14 (1976).
  3. G. E. Shaw, “Sun photometry,” Bull. Am. Meteorol. Soc. 64, 4–10 (1983).
  4. B. Schmid and C. Wehrli, “Comparison of Sun photometer calibration by Langley technique and standard lamp,” Appl. Opt. 34, 4500–4512 (1995).
  5. World Meteorological Organization, “Recent progress in Sun photometry. Determination of the aerosol optical depth,” Environmental Pollution Monitoring and Research Programme 43, obtainable as WMO/TD 143 (World Meteorological Organization, Geneva, Switzerland, 1986).
  6. World Meteorological Organization, “Report of the WMO workshop on the measurement of atmospheric optical depth and turbidity. Silver Spring, Md., 6–10 December,” B. Hicks, ed. WMO/GAW 101, obtainable as WMO/TD 659 (World Meteorological Organization, Geneva, Switzerland, 1993).
  7. C. Fröhlich, R. Philipona, J. Romero, and C. Wehrli, “Radiometry at the Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center,” Opt. Eng. 34, 2757–2766 (1995).
  8. A. Heimo, C. Tévoz, P. Renaud, R. W. Brusa, J. Sekler, and C. Fröhlich, “RASTA: Radiometer for Automatic Stations.” Working Report 183 of the Swiss Meteorological Institute. Available from Schweizerische Meteorologische Anstalt, Krähenbühlstrasse 58, Postfach, CH-8044 Zürich, Switzerland (1995).
  9. R. Peter and B. Schmid, “Comparison of columnar water vapor determined from microwave emission and solar transmission measurements,” in Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1993), pp. 193–197.
  10. B. Schmid and C. Wehrli, “High precision calibration of a Sun photometer using Langley plots performed at Jungfraujoch (3580 m) and standard irradiance lamps,” in Proceedings of the International Geoscience and Remote Sensing Symposium, T. I. Stein, ed. (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1994), pp. 2314–2316.
  11. B. Schmid, K. J. Thome, P. Demoulin, R. Peter, C. Mätzler, and J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
  12. B. Schmid, C. Mätzler, A. Heimo, and N. Kämpfer, “Retrieval of optical depth and size distribution of tropospheric and stratospheric aerosols by means of Sun photometry,” IEEE Trans. Geosci. Remote Sensing 35, 172–182 (1997).
  13. M. D. King and D. M. Byrne, “A method for inferring total ozone content from the spectral variation of total optical depth obtained with a solar radiometer,” J. Atmos. Sci. 33, 2242–2251 (1976).
  14. J. Stähelin, H. Schill, B. Högger, P. Viatte, G. Levrat, and A. Gamma, “Total ozone observation by Sun photometry at Arosa, Switzerland,” Opt. Eng. 34, 1977–1986 (1995).
  15. P. H. Lissberger and W. L. Wilcock, “Properties of all-dielectric interference filters. II. Filters in parallel beams of light incident obliquely and in convergent beams,” J. Opt. Soc. Am. 49, 126–130 (1959).
  16. R. E. Basher and W. A. Matthews, “Problems in the use of interference filters for spectrophotometric determination of total ozone,” J. Appl. Meteorol. 16, 795–802 (1977).
  17. J. H. Walker, R. D. Saunders, J. K. Jackson, and D. A. McSparron, “Spectral irradiance calibrations,” NBS Measurement Services SP 250–20 (National Bureau of Standards, U.S. Department of Commerce, Gaithersburg, Md., 1987).
  18. C. Wehrli, “Extraterrestrial solar spectrum,” Pub. 615 (Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, Davos-Dorf, Switzerland, 1985).
  19. Optronic, “Instructions for using the Optronic Laboratories 1000-Watt FEL tungsten-halogen lamp standards of total and spectral irradiance” (Optronic Laboratories Inc., 4470 35th Street, Orlando, Fla. 32811, 1987).
  20. R. D. Saunders and J. B. Shumaker, “The 1973 NBS scale of spectral irradiance,” Natl. Bur. Stand. Tech. Note 594–13 (1977).
  21. J. L. Mueller, B. C. Johnson, C. L. Cromer, J. W. Cooper, J. T. McLean, S. B. Hooker, and T. L. Westphal, “The second SeaWiFS Intercalibration Round-Robin Experiment, SIRREX-2, June 1993,” NASA Tech. Memo. 104566, Vol. 16, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).
  22. J. L. Mueller, B. C. Johnson, C. L. Cromer, S. B. Hooker, J. T. McLean, and S. F. Biggar, “The third SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-3), 19–30 September 1994,” NASA Tech. Memo. 104566, Vol. 34, S. B. Hooker, E. R. Firestone, and J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md. 1996).
  23. S. F. Biggar and P. N. Slater, “Preflight cross-calibration radiometer for Eos AM-1 platform visible and near-IR sources,” in Sensor Systems for the Early Earth Observing System Platforms, W. L. Barnes, ed., Proc. SPIE 1939, 243–249 (1993).
  24. G. Brasseur and P. Simon, “Stratospheric and thermal response to long-term variability in solar UV irradiance,” J. Geophys. Res. 86, 7343–7362 (1981).
  25. J. C. Arvesen, R. N. Griffin, and B. D. Pearson, “Determination of extraterrestrial solar spectral irradiance from a research aircraft,” Appl. Opt. 8, 2215–2232 (1969).
  26. H. Neckel and D. Labs, “The Solar radiation between 3300 and 12500 Å,” Sol. Phys. 90, 205–258 (1984).
  27. E. V. P. Smith and D. M. Gottlieb, “Solar flux and its variations,” Space Sci. Rev. 16, 771–802 (1974).
  28. D. Crommelynck, A. Fichot, V. Domingo, and R. Lee III, “SOLCON solar constant observations from the ATLAS missions,” Geophys. Res. Lett. 23, 2293–2295 (1996).
  29. F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharaya, L. S. Rothmann, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The Modtran 2/3 Report and LOWTRAN 7 Model” (Phillips Laboratory, Geophysics Directorate, 29 Randolph Road, Hanscom Air Force Base, Mass., (1996).
  30. B.-C. Gao and R. Green, “Presence of terrestrial atmospheric gas absorption bands in standard extraterrestrial solar irradiance curves in the near-infrared spectral region,” Appl. Opt. 34, 6263–6268 (1995).
  31. R. L. Kurucz, “The solar irradiance by computation,” in Proceedings of the 17th Annual Conference on Atmospheric Transmission Models, PL-TR-95–2060, G. P. Anderson, R. H. Picard, J. H. Chetwind, eds. (Phillips Laboratory Directorate of Geophysics, Hanscom Air Force Base, Mass., 1995), pp. 333–334.
  32. R. P. Cebula, G. O. Thuillier, M. E. VanHoosier, E. Hilsenrath, M. Herse, G. E. Brueckner, and P. C. Simon, “Observations of the solar irradiance in the 200–350 nm interval during the ATLAS-1 mission: a comparison among three sets of measurements—SSBUV, SOLSPEC, and SUSIM,” Geophys. Res. Lett. 23, 2289–2292 (1996).
  33. T. N. Woods, D. K. Prinz, G. J. Rottman, J. London, P. C. Crane, R. P. Cebula, E. Hilsenrath, G. E. Brueckner, M. D. Andrews, O. R. White, M. E. VanHoosier, L. E. Floyd, L. C. Herring, B. G. Knapp, C. K. Pankratz, and P. A. Reiser, “Validation of the UARS solar ultraviolet irradiances: comparison with the ATLAS 1 and 2 measurements,” J. Geophys. Res. 101, 9541–9569 (1996).
  34. G. Thuillier, M. Hersé, P. C. Simon, D. Labs, H. Mandel, and D. Gillotay, “Observation of the UV solar irradiance between 200 and 350 nm during the ATLAS-1 mission by the SOLSPEC spectrometer,” Sol. Phys. 171, 283–302 (1997).
  35. G. Thuillier, M. Hersé, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, and T. Foujols, “The visible solar spectral irradiance from 350 to 850 nm as measured by the SOLSPEC spectrometer during the ATLAS-1 mission,” Sol. Phys. 177, 41–61 (1998).
  36. R. L. Kurucz, Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Mass. 02138. (personal communication, 1996).
  37. R. L. Kurucz, I. Furenlid, J. Brault, and L. Testerman, “Solar Flux Atlas from 296 to 1300 nm,” (National Solar Observatory, Sunspot, N.M., 1984), pp. 1–2.
  38. F. Kasten and A. T. Young, “Revised optical air mass tables and approximation formula,” Appl. Opt. 28, 4735–4738 (1989).
  39. F. Kasten, “A new table and approximation formula for relative optical air mass,” Arch. Meteorol. Geophysics. Bioklimatol. Ser. B 14, 206–223 (1965).
  40. J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. M. Herman, and A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sensing 25, 647–653 (1987).
  41. J. J. Michalsky, J. C. Liljegren, and L. C. Harrison, “A comparison of Sun photometer derivations of total column water vapor and ozone to standard measures of same at the Southern Great Plains Atmospheric Radiation Measurement site,” J. Geophys. Res. 100,25,995–26,003 (1995).
  42. R. N. Halthore, T. F. Eck, B. N. Holben, and B. L. Markham, “Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band,” J. Geophys. Res. 102, 4343–4352 (1997).
  43. R. E. Basher, “The effect of bandwidth on filter instrument total ozone accuracy,” J. Appl. Meteorol. 16, 803–811 (1977).
  44. Instruments and Apparatus, Part 1. Measurement Uncertainty. ANSI/ASME Performance Test Codes 19.1–1985 (American Society of Mechanical Engineers, New York, 1986), pp. 23–25.
  45. U. Baltensperger, H. W. Gäggeler, D. T. Jost, M. Lugauer, M. Schwikowski, E. Weingartner, and P. Seibert, “Aerosol climatology at the high-alpine site Jungfraujoch, Switzerland,” J. Geophys. Res. 102,19,707–19,715 (1997).
  46. G. J. Labow, L. E. Flynn, M. A. Rawlins, R. A. Beach, C. A. Simmons, and C. N. Schubert, “Estimation of ozone with total ozone portable spectroradiometer instruments. I. Practical operation and comparisons,” Appl. Opt. 35, 6084–6089 (1996).
  47. M. Morys, F. M. Mims III, and S. E. Anderson, “Design, calibration and performance of microtops II hand-held ozonometer,” presented at the 12th International Congress on Photobiology, Vienna, September 1996.
  48. J. A. Reagan, L. W. Thomason, B. M. Herman, and J. M. Palmer, “Assessment of atmospheric limitations on the determination of the solar spectral constant from ground-based spectroradiometer measurements,” IEEE Trans. Geosci. Remote Sensing 24, 258–266 (1986).
  49. R. M. Schotland and T. K. Lea, “Bias in a solar constant determination by the Langley method due to structured atmospheric aerosol,” Appl. Opt. 25, 2486–2491 (1986).
  50. B. W. Forgan, “Bias in a solar constant determination by the Langley method due to structured atmospheric aerosol: comment,” Appl. Opt. 27, 2546–2548 (1988).
  51. P. B. Russell, J. M. Livingston, E. G. Dutton, R. F. Puschel, J. A. Reagan, T. E. Defoor, M. A. Box, D. Allen, P. Pilewski, B. M. Herman, S. A. Kinne, and D. J. Hofmann, “Pinatubo and pre-Pinatubo optical-depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data,” J. Geophys. Res. 98,22,969–22,985 (1993).
  52. P. B. Russell and G. E. Shaw, “Comments on: precision and accuracy of sunphotometry,” J. Appl. Meteorol. 14, 1206–1209 (1975).
  53. J. A. Reagan, I. C. Scott-Fleming, B. M. Herman, and R. M. Schotland, “Recovery of spectral optical depth and zero-airmass solar spectral irradiance under conditions of temporally varying optical depth,” in Proceedings of the International Geoscience and Remote Sensing Symposium (European Space Agency, Noordwijk, The Netherlands, 1984), pp. 455–459.
  54. G. E. Shaw, “Solar spectral irradiance and atmospheric transmission at Mauna Loa Observatory,” Appl. Opt. 21, 2006–2011 (1982).
  55. C. Wehrli and C. Fröhlich, “Solar spectral irradiance measurements at 386 nm, 500 nm and 778 nm,” Metrologia 28, 285–289 (1991).
  56. C. J. Bruegge, R. N. Halthore, B. Markham, M. Spanner, and R. Wrigley, “Aerosol optical depth retrievals over the Konza Prairie,” J. Geophys. Res. 97,18,743–18,758 (1992).
  57. R. T. Pinker, “Characteristic aerosol optical depths during the Harmattan season on sub-Sahara Africa,” Geophys. Res. Lett. 21, 685–688 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited