OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 2 — Jan. 10, 1998
  • pp: 194–204

Design approaches for VCSEL’s and VCSEL-based smart pixels toward parallel optoelectronic processing systems

Takashi Kurokawa, Shinji Matso, Tatsushi Nakahara, Kota Tateno, Yoshitaka Ohiso, Atsushi Wakatsuki, and Hiroyuki Tsuda  »View Author Affiliations


Applied Optics, Vol. 37, Issue 2, pp. 194-204 (1998)
http://dx.doi.org/10.1364/AO.37.000194


View Full Text Article

Enhanced HTML    Acrobat PDF (1534 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The technical issues involved in applying vertical-cavity surface-emitting lasers (VCSEL’s) to parallel optical interconnection systems are discussed from the viewpoint of their application to asynchronous transfer mode switching and parallel computer systems. We also discuss approaches to designing a VCSEL array structure for high-speed modulation and the effect of pixel-performance homogeneity on the transmission bandwidth and power consumption. We review monolithic and hybrid integration technologies for VCSEL-based smart-pixel arrays, and we estimate the maximum pixel number and input–output throughput allowed in a chip, considering the power consumption and pixel homogeneity. We show that a one-chip optoelectronic parallel processing system comprising more than 1000 processor elements is possible when smart-pixel arrays are fabricated under the 0.25-μm complementary metal-oxide semiconductor design rule.

© 1998 Optical Society of America

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(200.4650) Optics in computing : Optical interconnects
(220.4880) Optical design and fabrication : Optomechanics

History
Original Manuscript: April 7, 1997
Revised Manuscript: August 25, 1997
Published: January 10, 1998

Citation
Takashi Kurokawa, Shinji Matso, Tatsushi Nakahara, Kota Tateno, Yoshitaka Ohiso, Atsushi Wakatsuki, and Hiroyuki Tsuda, "Design approaches for VCSEL’s and VCSEL-based smart pixels toward parallel optoelectronic processing systems," Appl. Opt. 37, 194-204 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-2-194


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Kurokawa, “Study of surface-normal photonic switches for broadband networks at NTT,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 128–135 (1996). [CrossRef]
  2. N. Miyaho, M. Hirano, Y. Takagi, K. Shiomoto, T. Takahashi, “An ATM switching system architecture for first generation of broadband services,” in Proceedings of the International Switching Symposium (ISS’92) (The Institute of Electronics, Information and Communication Engineers, Tokyo, 1992), pp. 285–289.
  3. R. A. Nordin, W. A. Holland, M. A. Shahid, “Advanced optical interconnection technology in switching equipment,” J. Lightwave Technol. 13, 987–994 (1995). [CrossRef]
  4. S. Hino, M. Togashi, K. Yamasaki, “Asynchronous transfer mode switching LSI chips with 10-Gb/s serial I/O ports,” IEEE J. Solid-State Circuits 30, 348–352 (1995). [CrossRef]
  5. N. Yamanaka, K. Endo, K. Genda, H. Fukuda, T. Kishimoto, S. Sasaki, “320 Gb/s high speed ATM switching system hardware technologies based on copper-polyimide MCM,” IEEE Trans. Components Packag. Manu. Technol. B 18, 83–91 (1995). [CrossRef]
  6. K. H. Hahn, “POLO-parallel optical links for gigabyte data communications,” in Proceedings of the Forty-Fifth Electronic Components and Technology Conference (ECTC) (Institute for Electrical and Electronics Engineers, New York, 1995), pp. 368–375.
  7. A. F. Benner, “Programmer-level implications of optical interconnects,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 196–207 (1996). [CrossRef]
  8. Y.-M. Wong, D. J. Muehlner, C. C. Faudskar, D. K. Lewis, P. J. Anthony, M. Bendett, D. M. Kuchta, J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronics technology consortium (OETC),” J. Lightwave Technol. 13, 995–1013 (1995). [CrossRef]
  9. D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, C. L. Shieh, S. M. Kuo, S. G. Shook, B. Webb, “A low cost, high performance optical interconnect,” in Proceedings of the Forty-Fifth Electronic Components and Technology Conference (ECTC) (Institute for Electrical and Electronics Engineers, New York, 1995), pp. 376–379.
  10. A. Takai, T. Kato, S. Yamashita, S. Hanatani, Y. Motegi, K. Ito, H. Abe, “200-Mbit/s/ch 100-m optical subsystem interconnections using 8-channel 1.3-mm laser diode arrays and single-mode fiber arrays,” J. Lightwave Technol. 12, 260–270 (1994). [CrossRef]
  11. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. L. Brubaker, A. L. Lentine, R. L. Morrison, S. J. Hinterlong, M. J. Herron, S. L. Walker, J. M. Sasian, “Experimental investigation of a free-space optical switching network by using symmetric self-electro-optic-effect devices,” Appl. Opt. 31, 5431–5446 (1992). [CrossRef] [PubMed]
  12. T. Yamamoto, M. Yamaguchi, K. Hirabayashi, S. Matso, C. Amano, H. Iwamura, Y. Kohama, T. Kurokawa, K. Koyabu, “High-density digital free-space photonic switches using micro-beam optical interconnections,” IEEE Photonics Technol. Lett. 8, 358–360 (1996). [CrossRef]
  13. G. C. Boisset, B. Robertson, H. S. Hinton, “Design and construction of an active alignment demonstrator for a free-space optical interconnect,” IEEE Photonics Technol. Lett. 7, 676–678 (1995). [CrossRef]
  14. T. Yamamoto, K. Hirabayashi, M. Yamaguchi, S. Hino, Y. Kohama, K. Tateno, “Active alignment of massively parallel free-space board-to-board optical interconnections using an adjustable liquid prism,” in Technical Digest of 1996 International Topical Meeting on Photonics in Switching (PS’96), (The Institute of Electronics, Information and Communication Engineers, Tokyo, 1996), paper PThD6.
  15. K. Noguchi, T. Sakano, T. Matsumoto, “A 128 × 128-channel free-space optical switch using polarization multiplexing technique,” in Proceedings of the European Conference on Optical Communications (ECOC’91), (Institution of Electrical Engineers, London, 1991), Vol. 1, pp. 165–168.
  16. K. Hamanaka, “Optical bus interconnection system using Selfoc lenses,” Opt. Lett. 16, 1222–1224 (1991). [CrossRef] [PubMed]
  17. D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photonics Technol. Lett. 7, 1057–1059 (1995). [CrossRef]
  18. T. Szymanski, “A photonic backplane architecture for broadband switching,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 86–99 (1996). [CrossRef]
  19. T. Kurokawa, N. Takato, Y. Katayama, “Polymer optical circuits for multimode optical fiber systems,” Appl. Opt. 19, 3124–3129 (1980). [CrossRef] [PubMed]
  20. M. Koyanagi, “Optical interconnection using polyimide waveguide for multi-chip module,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Vol. CR62 of SPIE Critical Review Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1996), pp. 329–342.
  21. T. Kurokawa, S. Oikawa, “Optical waveguide intersections without light leak,” Appl. Opt. 16, 1033–1037 (1977). [CrossRef] [PubMed]
  22. J. L. Jewell, “VCSEL-based optical interconnections at inter-box distances and shorter,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Vol. CR62 of SPIE Critical Review Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1996), pp. 229–243.
  23. D. B. Young, J. W. Scott, F. H. Peters, B. J. Thibeault, S. W. Corzine, M. G. Peters, S. L. Lee, L. A. Coldren, “High-power temperature-insensitive gain-offset InGaAs/GaAs vertical-cavity surface-emitting lasers,” IEEE Photonics Technol. Lett. 5, 129–132 (1993). [CrossRef]
  24. S. Yamashita, A. Oka, T. Kawano, T. Tsuchiya, K. Sitoh, K. Uomi, Y. Ono, “Low threshold (3mA) 1.3 μm InGaAsP MQW laser array on a p-type substrate,” IEEE Photonics Technol. Lett. 4, 954–957 (1992). [CrossRef]
  25. G. M. Yang, M. H. MacDougal, P. D. Dapkus, “Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation,” Electron. Lett. 31, 886–888 (1995). [CrossRef]
  26. K. L. Lear, K. D. Choquette, R. P. Schneider, S. P. Kilcoyne, K. M. Geib, “Selectively oxidized vertical-cavity surface-emitting lasers with 50% power conversion efficiency,” Electron. Lett. 31, 208–209 (1995). [CrossRef]
  27. Y. Ohiso, K. Tateno, Y. Kohama, A. Wakatsuki, H. Tsunetsugu, T. Kurokawa, “Flip-chip bonded 0.85-μm bottom-emitting vertical-cavity surface-emitting laser array on an AlGaAs substrate,” IEEE Photonics Technol. Lett. 8, 1115–1117 (1996). [CrossRef]
  28. N. M. Margalit, D. I. Barbic, K. Streubel, R. P. Mirin, D. E. Mars, J. E. Bowers, E. L. Hu, “Laterally oxidized long wavelength cw vertical-cavity lasers,” Appl. Phys. Lett. 69, 471–472 (1996). [CrossRef]
  29. Y. Ohiso, C. Amano, Y. Itoh, K. Tateno, T. Tadokoro, H. Takenouchi, T. Kurokawa, “1.55 μm vertical-cavity surface-emitting lasers with wafer-fused InGaAsP/InP-GaAs/AlAs DBRs,” Electron. Lett. 32, 1483–1484 (1996). [CrossRef]
  30. D. A. B. Miller, “Quantum-well self-electro-optic effect devices,” Opt. Quantum Electron. 22, S61–S98 (1990).
  31. S. Matsuo, T. Nakahara, Y. Kohama, Y. Ohiso, S. Fukushima, T. Kurokawa, “Monolithically integrated photonic switching device using an MSM PD, MESFET’s, and a VCSEL,” IEEE Photonics Technol. Lett. 7, 1165–1167 (1995). [CrossRef]
  32. A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996). [CrossRef]
  33. S. M. Fike, B. Bunchanan, N. M. Jokerst, M. A. Brooke, T. G. Morris, S. P. DeWeerth, “8 × 8 array of thin-film photodetectors vertically electrically interconnected to a silicon circuitry,” IEEE Photonics Technol. Lett. 7, 1168–1170 (1995). [CrossRef]
  34. M. S. Jin, V. Ozguz, S. H. Lee, “Integration of microlaser arrays with thinned and drilled CMOS silicon driver arrays,” in Technical Digest of the 1996 International Topical Meeting on Optical Computing (OC’96), (The Japan Society of Applied Physics, Tokyo, 1996), pp. 68–69.
  35. S. Matsuo, T. Nakahara, K. Tateno, T. Kurokawa, “Novel technology for hybrid integration of photonic and electronic circuits,” IEEE Photonics Technol. Lett. 8, 1507–1509 (1996). [CrossRef]
  36. S. Matsuo, K. Tateno, T. Nakahara, H. Tsuda, T. Kurokawa, “Use of polyimide bonding for hybrid integration of a vertical-cavity surface-emitting laser on a silicon substrate,” Electron. Lett. 33, 1148–1149 (1997). [CrossRef]
  37. M. Ishikawa, “Optoelectronic parallel computing system with reconfigurable optical implementation,” in Optoelectronic Interconnects and Packaging, R. T. Chen, P. S. Guilfoyle, eds., Vol. CR62 of SPIE Critical Review Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1996), pp. 156–175.
  38. T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Kahringer, R. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8-μm silicon CMOS,” IEEE Photonics Technol. Lett. 8, 422–424 (1996). [CrossRef]
  39. K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photonics Technol. Lett. 7, 360–362 (1995). [CrossRef]
  40. T. Nakahara, S. Matsuo, S. Fukushima, T. Kurokawa, “Performance comparison between multiple-quantum-well modulator-based and vertical-cavity-surface-emitting laser-based smart pixels,” Appl. Opt. 35, 860–871 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited