OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 2 — Jan. 10, 1998
  • pp: 205–227

Speed and Energy Analysis of Digital Interconnections: Comparison of On-Chip, Off-Chip, and Free-Space Technologies

Gökçe I. Yayla, Philippe J. Marchand, and Sadik C. Esener  »View Author Affiliations

Applied Optics, Vol. 37, Issue 2, pp. 205-227 (1998)

View Full Text Article

Acrobat PDF (447 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We model and compare on-chip (up to wafer scale) and off-chip(multichip module) high-speed electrical interconnections withfree-space optical interconnections in terms of speed performance andenergy requirements for digital transmission in large-scalesystems. For all technologies the interconnections are firstmodeled and optimized for minimum delay as functions of theinterconnection length for both one-to-one and fan-outconnections. Then energy requirements are derived as functions ofthe interconnection length. Free-space optical interconnectionsthat use multiple-quantum-well modulators or vertical-cavitysurface-emitting lasers as transmitters are shown to offer aspeed–energy product advantage as high as 30 over that of the electrical interconnection technologies.

© 1998 Optical Society of America

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(250.0250) Optoelectronics : Optoelectronics

Gökçe I. Yayla, Philippe J. Marchand, and Sadik C. Esener, "Speed and Energy Analysis of Digital Interconnections: Comparison of On-Chip, Off-Chip, and Free-Space Technologies," Appl. Opt. 37, 205-227 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
  2. L. A. Bergman, W. H. Wu, A. R. Johnston, and R. Nixon, “Holographic optical interconnects in VLSI,” Opt. Eng. 25, 1109–1118 (1986).
  3. W. H. Wu, L. A. Bergman, A. R. Johnston, and C. C. Guest, “Implementation of optical interconnections for VLSI,” IEEE Trans. Electron. Devices 34, 706–714 (1987).
  4. R. K. Kostuk, J. W. Goodman, and L. Hesselink, “Optical imaging applied to microelectric chip-to-chip interconnections,” Appl. Opt. 24, 2851–2858 (1985).
  5. F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, New York, 1993), Vol. II, pp. 169–250.
  6. F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, and S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” Lightwave Technol. 9, 1674–1692 (1991).
  7. A. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, and S. H. Lee, “Grain-size study for a 2-D shuffle-exchange optoelectronic multistage interconnection network,” Appl. Opt. 31, 5480–5507 (1992).
  8. K. Urquhart, P. Marchand, Y. Fainman, and S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).
  9. M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
  10. G. Yayla, P. Marchand, and S. Esener, “Energy requirements and speed analysis of digital electrical and free-space optical interconnections,” in Optical Interconnections and Parallel Processing: The Interface, P. Berthome and A. Ferreira, eds. (Kluwer, Dordrecht, The Netherlands, 1997), Chap. 1.
  11. K. Ayadi, M. Kuijk, P. Heremans, and G. Bickel, “A monolithic optoelectronic receiver in standard 0.7-μm CMOS operating at 180 MHz and 176-fJ light input energy,” IEEE Photon. Technol. Lett. 9, 88–90 (1997).
  12. H. J. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE J. Solid-State Circuits SC-19, 468–474 (1984).
  13. N. C. Li, G. L. Haviland, and A. A. Tuszynski, “CMOS tapered buffer,” IEEE J. Solid-State Circuits 25, 1005–1008 (1990).
  14. R. Geiger, P. Allen, and N. Stroder, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990), pp. 590–593.
  15. A. L. DeCegama, Parallel Processing Architectures and VLSI Hardware (Prentice-Hall, Englewood Cliffs, N.J., 1989).
  16. T. C. Lee and J. Cong, “The new line in IC design,” IEEE Spectrum 34(3), 52–58 (1997).
  17. H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI (Addison-Wesley, Reading, Mass., 1990).
  18. B. Wadell, Transmission Line Design Handbook (Artech House, Boston, 1991).
  19. S. Wolf, Silicon Processing for the VLSI Era: Process Integration, (Lattice, Sunset Beach, Calif., 1990).
  20. S. Wolf, Silicon Processing for the VLSI Era: The Submicron MOSFET (Lattice, Sunset Beach, Calif., 1995).
  21. S. Rosenstark, Transmission Lines in Computer Engineering (McGraw-Hill, New York, 1994).
  22. D. A. B. Miller, D. S. Chemla, T. C. Damen, and A. C. Gossard, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1060 (1985).
  23. C. Fan, D. W. Shih, M. W. Hansen, S. C. Esener, and H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 μm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
  24. A. V. Krishnamoorthy, A. Krishnamoorthy, T. K. Woodward, K. W. Goosen, and J. A. Walker, “Operation of a single-ended 550 Mbits/sec, 41 fJ, hybrid CMOS/MQW receiver-transmitter,” Electron. Lett. 32, 764–765 (1996).
  25. B. Pezeshki, D. Thomas, and J. S. Harris, Jr., “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Appl. Phys. Lett. 57, 1491–1492 (1990).
  26. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
  27. P. J. Stevens and G. Parry, “Limits to normal incidence electroabsorption modulation in GaAs/(GaAl) as multiple quantum well diodes,” J. Lightwave Technol. 7, 1101–1108 (1989).
  28. T. H. Wood, J. Z. Pastalan, C. A. Burrus, Jr., B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
  29. L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, and R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. SPIE 1362, 79–92 (1990).
  30. J. Jewell, G. Olbright, “Vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
  31. D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29(6), 2013–2022 (1993).
  32. R. Geels and L. Coldren, “Submilliamp threshold vertical cavity laser diodes,” Appl. Phys. Lett. 57, 1605–1607 (1990).
  33. C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esener, and G. C. Marsden, “A comparison of transmitter technologies for digital free-space optical interconnections,” Appl. Opt. 34, 3103–3115 (1995).
  34. D. A. Van Blerkom, O. Kibar, C. Fan, P. J. Marchand, and S. C. Esener, “Power optimization of digital free-space optoelectronic interconnections,” J. Lightwave Technol. (to be published).
  35. D. Van Blerkom, C. Fan, M. Blume, and S. C. Esener, “Optimization of smart pixel receivers,” J. Lightwave Technol. (to be published).
  36. A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2(4), 55–76 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited