OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 2 — Jan. 10, 1998
  • pp: 284–295

Specification for a reconfigurable optoelectronic VLSI processor suitable for digital signal processing

Dietmar Fey, Bernd Kasche, Christian Burkert, and Oliver Tschäche  »View Author Affiliations


Applied Optics, Vol. 37, Issue 2, pp. 284-295 (1998)
http://dx.doi.org/10.1364/AO.37.000284


View Full Text Article

Acrobat PDF (268 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A concept for a parallel digital signal processor based on opticalinterconnections and optoelectronic VLSI circuits is presented. Itis shown that the proper combination of optical communication, architecture, and algorithms allows a throughput that outperformspurely electronic solutions. The usefulness of low-level algorithmsfrom the add-and-shift class is emphasized. These algorithms leadto fine-grain, massively parallel on-chip processor architectures withhigh demands for optical off-chip interconnections. A comparativeperformance analysis shows the superiority of a bit-serialarchitecture. This architecture is mapped onto an optoelectronicthree-dimensional circuit, and the necessary optical interconnectionscheme is specified.

© 1998 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(250.0250) Optoelectronics : Optoelectronics

Citation
Dietmar Fey, Bernd Kasche, Christian Burkert, and Oliver Tschäche, "Specification for a reconfigurable optoelectronic VLSI processor suitable for digital signal processing," Appl. Opt. 37, 284-295 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-2-284


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. Sai-Halasz, “Performance trends in high-end processors,” Proc. IEEE 83, 20–36 (1995).
  2. K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photonics Technol. Lett. 7, 360–362 (1995).
  3. A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–75 (1996).
  4. T. K. Woodward, “VSLI-compatible smart-pixel circuits and technology,” in Smart Pixel Digital Digest (Institute of Electrical and Electronics Engineers, New York, 1996), p. 65.
  5. S. Araki, M. Kajita, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, and T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
  6. J. Jahns, “Planar packaging of free space optical interconnections,” Proc. IEEE 82, 1623–1631 (1994).
  7. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. L. Brubaker, A. L. Lentine, R. L. Morrison, S. J. Hinterlong, M. J. Herron, S. L. Walker, and J. M. Sasian, “Experimental investigation of free-space optical switching network by using symmetric self-electro-optic-effect devices,” Appl. Opt. 31, 5431–5446 (1992).
  8. J. A. Neff, C. Chen, T. McLaren, C.-C. Mao, A. Fedor, W. Berseth, Y. C. Lee, and V. Morozov, “VCSEL/CMOS smart pixel arrays for free-space optical interconnects,” in Proceedings of MPPOI’96, A. Gottlieb, Y. Li, and E. Schenfeld, eds. (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 282–289.
  9. The mention of brand names in this paper is for information purposes only and does not constitute an endorsement of the product by the authors or their institutions (Synopsys Corp.).
  10. A. V. Krishnamoorthy, P. J. Marchand, F. E. Kiamilev, and S. C. Esener, “Grain-size considerations for optoelectronic multistage interconnection networks,” Appl. Opt. 31, 5480–5507 (1992).
  11. D. Fey and W. Erhard, “Algorithms for high-performance computing with smart pixels,” in Applications of Photonic Technology, G. A. Lampropoulos, J. Chrostowski, and R. M. Measures, eds. (Plenum, New York, 1995), pp. 97–100.
  12. D. Fey, A. Kurschat, B. Kasche, and W. Erhard, “A 3D optoelectronic processor for smart pixel processing units,” in Proceedings of MPPOI’96, A. Gottlieb, Y. Li, and E. Schenfeld, eds. (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 344–351.
  13. M. Ishikawa, “System architecture for integrated optoelectronic computing,” Optoelectron. Devices Technol. 9, 29–36 (1994).
  14. J. Volder, “The CORDIC trigonometric computing technique,” IRE Trans. Electron. Comput. EC-8, 330–334 (1959).
  15. B. Kasche and D. Fey, “Optimale Algorithmen zur Berechnung von Standardfunktionen mittels Smart Pixel Rechenwerke,” Tech. Rep., in Berichte zur Rechnerarchitektur, W. Erhard, ed. (University of Jena, Jena, Germany, 1996), Vol. 2.
  16. I. Koren, Computer Arithmetic Algorithms (Prentice-Hall, Englewood Cliffs, N.J., 1993).
  17. K. Hwang, Computer Arithmetic—Principles, Architecture and Design (Wiley, New York, 1979).
  18. A. R. Omondi, Computer Arithmetic Systems: Algorithms, Architecture and Implementation (Prentice-Hall, Englewood Cliffs, N.J., 1994).
  19. J. Slansky, “An evaluation of several two-summand binary adders,” IRE Trans. EC-9, 213–226 (1960).
  20. G. Grimm, “Entwicklung eines VLSI Layouts für optoelektronische programmierbare Schaltkreise,” Tech. Rep., in Berichte zur Rechnerarchitektur, W. Erhard, ed. (University of Jena, Jena, Germany, 1997), Vol. 3.
  21. U. Krackhardt and N. Streibl, “Design of Dammann-gratings for array generation,” Opt. Commun. 74, 31–36 (1989).
  22. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the Talbot effect,” Appl. Opt. 29, 4337–4340 (1990).
  23. V. Sieh, O. Tschäche, and F. Balbach, “Evalutaion of dependable systems using verify,” in Preprint of the Sixth Conference on Dependable Computing for Critical Applications (DCCA-6), M. Dal Cin, ed. (Grainau, Germany, 1997), pp. 59–76.
  24. V. Sieh, O. Tschäche, and F. Balbach. verify: evaluation of reliability using VHDL-models with embedded fault descriptions, in Proceedings of the Twenty-Seventh Annual International Symposium on Fault-Tolerant Computing (FTCS-27), P. Storms, ed. (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 32–36.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited