OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 2 — Jan. 10, 1998
  • pp: 296–307

Error correction for free-space optical interconnects: space–time resource optimization

Mark A. Neifeld and Raymond K. Kostuk  »View Author Affiliations

Applied Optics, Vol. 37, Issue 2, pp. 296-307 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the joint optimization of time and space resources within free-space optical interconnect (FSOI) systems. Both analytical and simulation results are presented to support this optimization study for two different models of FSOI cross-talk noise: diffraction from a rectangular aperture and Gaussian propagation. Under realistic power and signal-to-noise ratio constraints, optimum designs based on the Gaussian propagation model achieve a capacity of 2.91 × 1015 bits s-1 m-2, while the rectangular model offers a smaller capacity of 1.91 × 1013 bits s-1 m-2. We also study the use of error-correction codes (ECC) within FSOI systems. We present optimal Reed–Solomon codes of various length, and their use is shown to facilitate an increase in both spatial density and data rate, resulting in FSOI capacity gains in excess of 8.2 for the rectangular model and 3.7 for the Gaussian case. A tolerancing study of FSOI systems shows that ECC can provide tolerance to implementational error sources. We find that optimally coded FSOI systems can fail when system errors become large, and we present a compromise solution that results in a balanced design in time, space, and error-correction resources.

© 1998 Optical Society of America

OCIS Codes
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects

Original Manuscript: March 5, 1997
Revised Manuscript: June 13, 1997
Published: January 10, 1998

Mark A. Neifeld and Raymond K. Kostuk, "Error correction for free-space optical interconnects: space–time resource optimization," Appl. Opt. 37, 296-307 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. T. Cathy, B. J. Smith, “High concurrency data bus using arrays of optical emitters and detectors,” Appl. Opt. 18, 1687–1691 (1979). [CrossRef]
  2. J. Jahns, “Concepts for digital computing—a survey,” Optik 57, 429–449 (1980).
  3. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984). [CrossRef]
  4. D. Z. Tsang, “One-gigabit per second free-space optical interconnection,” Appl. Opt. 29, 2034–2037 (1990). [CrossRef] [PubMed]
  5. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996). [CrossRef] [PubMed]
  6. T. Sakano, T. Matsumoto, K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system: cosine-iii,” Appl. Opt. 34, 1815–1822 (1995). [CrossRef] [PubMed]
  7. R. F. Carson, M. L. Lovejoy, K. L. Lear, M. E. Warren, P. K. Seigal, D. C. Craft, S. P. Kilcoyne, G. A. Patrizi, O. Blum, “Low-power approaches for parallel, free-space photonic interconnects,” Vol. CR62 of SPIE Critical Reviews of Optical Science and Technology (SPIE Press, Bellingham, Wash., 1996), pp. 35–63.
  8. S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996). [CrossRef] [PubMed]
  9. D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995). [CrossRef]
  10. R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992). [CrossRef]
  11. C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esner, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 35, 3103–3115 (1995). [CrossRef]
  12. M. Feldman, C. Guest, T. Drabik, S. Esner, “Comparison between electrical and free-space optical interconnects for fine grain processor arrays based on interconnect density capabilities,” Appl. Opt. 28, 3820–3829 (1989). [CrossRef] [PubMed]
  13. R. K. Kostuk, J.-H. Yeh, M. Fink, “Distributed optical data bus for board-level interconnects,” Appl. Opt. 32, 5010–5021 (1993). [CrossRef] [PubMed]
  14. A. K. Ghosh, “Alignability of optical interconnects,” Appl. Opt. 29, 5253–5261 (1987). [CrossRef]
  15. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mesereau, A. Y. Feldblum, “Optical interconnects using microlens arrays,” J. Opt. Quantum Electron. 24, S465–S477 (1992). [CrossRef]
  16. M. A. Neifeld, M. McDonald, “Error correction for increasing the usable capacity of photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994). [CrossRef] [PubMed]
  17. M. A. Neifeld, W.-C. Chou, “Information theoretic limits to the capacity of volume holographic optical memory,” Appl. Opt. 36, 514–517 (1997). [CrossRef] [PubMed]
  18. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), Chap. 11.
  19. T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996). [CrossRef]
  20. S. Lin, D. J. Costello, Error Control Coding(Prentice-Hall, Englewood Cliffs, N.J., 1983), Chap. 6.
  21. W. W. Peterson, E. J. Weldon, Error-Correcting Codes (MIT Press, Cambridge, Mass., 1972).
  22. M. A. Neifeld, J. D. Hayes, “Error-correction schemes for volume optical memories,” Appl. Opt. 34, 8183–8191 (1995). [CrossRef] [PubMed]
  23. M. A. Neifeld, S. Sridharan, “Parallel error correction using spectral Reed–Solomon codes,” J. Opt. Commun. 17, 525–531 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited