OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 2 — Jan. 10, 1998
  • pp: 296–307

Error Correction for Free-Space Optical Interconnects: Space-Time Resource Optimization

Mark A. Neifeld and Raymond K. Kostuk  »View Author Affiliations

Applied Optics, Vol. 37, Issue 2, pp. 296-307 (1998)

View Full Text Article

Acrobat PDF (367 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the joint optimization of time and space resources withinfree-space optical interconnect (FSOI) systems. Both analyticaland simulation results are presented to support this optimization studyfor two different models of FSOI cross-talk noise: diffraction froma rectangular aperture and Gaussian propagation. Under realisticpower and signal-to-noise ratio constraints, optimum designs based onthe Gaussian propagation model achieve a capacity of 2.91 ×10<sup>15</sup> bits s<sup>−1</sup> m<sup>−2</sup>, while therectangular model offers a smaller capacity of 1.91 ×10<sup>13</sup> bits s<sup>−1</sup> m<sup>−2</sup>. We alsostudy the use of error-correction codes (ECC) within FSOIsystems. We present optimal Reed–Solomon codes of various length, and their use is shown to facilitate an increase in both spatialdensity and data rate, resulting in FSOI capacity gains in excess of8.2 for the rectangular model and 3.7 for the Gaussian case. Atolerancing study of FSOI systems shows that ECC can provide toleranceto implementational error sources. We find that optimally codedFSOI systems can fail when system errors become large, and we present acompromise solution that results in a balanced design in time, space, and error-correction resources.

© 1998 Optical Society of America

OCIS Codes
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects

Mark A. Neifeld and Raymond K. Kostuk, "Error Correction for Free-Space Optical Interconnects: Space-Time Resource Optimization," Appl. Opt. 37, 296-307 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. T. Cathy and B. J. Smith, “High concurrency data bus using arrays of optical emitters and detectors,” Appl. Opt. 18, 1687–1691 (1979).
  2. J. Jahns, “Concepts for digital computing—a survey,” Optik 57, 429–449 (1980).
  3. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
  4. D. Z. Tsang, “One-gigabit per second free-space optical interconnection,” Appl. Opt. 29, 2034–2037 (1990).
  5. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simmons, K. Song, D. A. Thompson, and W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996).
  6. T. Sakano, T. Matsumoto, and K. Noguchi, “Three-dimensional board-to-board free-space optical interconnects and their application to the prototype multiprocessor system: cosine-iii,” Appl. Opt. 34, 1815–1822 (1995).
  7. R. F. Carson, M. L. Lovejoy, K. L. Lear, M. E. Warren, P. K. Seigal, D. C. Craft, S. P. Kilcoyne, G. A. Patrizi, and O. Blum, “Low-power approaches for parallel, free-space photonic interconnects,” Vol. CR62 of SPIE Critical Reviews of Optical Science and Technology (SPIE Press, Bellingham, Wash., 1996), pp. 35–63.
  8. S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, and T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
  9. D. V. Plant, B. Robertson, H. S. Hinton, W. M. Robertson, G. C. Boisset, N. H. Kim, Y. S. Liu, M. R. Otazo, D. R. Rolston, and A. Z. Shang, “An optical backplane demonstrator system based on FET-SEED smart pixel arrays and diffractive lenslet arrays,” IEEE Photon. Technol. Lett. 7, 1057–1059 (1995).
  10. R. A. Nordin, A. F. J. Levi, R. N. Nottenburg, J. O’Gorman, T. Tanbun-Ek, and R. A. Logan, “A systems perspective on digital interconnection technology,” J. Lightwave Technol. 10, 811–827 (1992).
  11. C. Fan, B. Mansoorian, D. A. Van Blerkom, M. W. Hansen, V. H. Ozguz, S. C. Esner, and G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 35, 3103–3115 (1995).
  12. M. Feldman, C. Guest, T. Drabik, and S. Esner, “Comparison between electrical and free-space optical interconnects for fine grain processor arrays based on interconnect density capabilities,” Appl. Opt. 28, 3820–3829 (1989).
  13. R. K. Kostuk, J.-H. Yeh, and M. Fink, “Distributed optical data bus for board-level interconnects,” Appl. Opt. 32, 5010–5021 (1993).
  14. A. K. Ghosh, “Alignability of optical interconnects,” Appl. Opt. 29, 5253–5261 (1987).
  15. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mesereau, and A. Y. Feldblum, “Optical interconnects using microlens arrays,” J. Opt. Quantum Electron. 24, S465–S477 (1992).
  16. M. A. Neifeld and M. McDonald, “Error correction for increasing the usable capacity of photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994).
  17. M. A. Neifeld and W.-C. Chou, “Information theoretic limits to the capacity of volume holographic optical memory,” Appl. Opt. 36, 514–517 (1997).
  18. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), Chap. 11.
  19. T. K. Woodward, A. U. Krishnamoorthy, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. M. F. Chirousky, S. P. Hui, B. Tseug, D. Kossives, D. Dahringer, D. Bacon, and R. E. Leibenguth, “Clock-sense-amplifier-based smart-pixel optical receivers,” IEEE Photon. Technol. Lett. 8, 1067–1069 (1996).
  20. S. Lin and D. J. Costello, Jr., Error Control Coding (Prentice-Hall, Englewood Cliffs, N.J., 1983), Chap. 6.
  21. W. W. Peterson and E. J. Weldon, Error-Correcting Codes (MIT Press, Cambridge, Mass., 1972).
  22. M. A. Neifeld and J. D. Hayes, “Error-correction schemes for volume optical memories,” Appl. Opt. 34, 8183–8191 (1995).
  23. M. A. Neifeld and S. Sridharan, “Parallel error correction using spectral Reed–Solomon codes,” J. Opt. Commun. 17, 525–531 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited