OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 2 — Jan. 10, 1998
  • pp: 308–314

Optical interconnection for neural networks by use of a self-imaging function

Jianwen Hua, Liren Liu, and Guoqiang Li  »View Author Affiliations

Applied Optics, Vol. 37, Issue 2, pp. 308-314 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (406 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A grating-lens combination unit is developed to form a scaling self-transform function that can self-image on scale. Then an array of many such grating-lens units is used for the optical interconnection of a two-dimensional neural network, and experiments are carried out. We find that our idea is feasible, the optical interconnection system is simple, and optical adjustment is easy.

© 1998 Optical Society of America

OCIS Codes
(110.6760) Imaging systems : Talbot and self-imaging effects
(110.6980) Imaging systems : Transforms
(200.4260) Optics in computing : Neural networks
(200.4650) Optics in computing : Optical interconnects

Original Manuscript: March 31, 1997
Revised Manuscript: July 10, 1997
Published: January 10, 1998

Jianwen Hua, Liren Liu, and Guoqiang Li, "Optical interconnection for neural networks by use of a self-imaging function," Appl. Opt. 37, 308-314 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982). [CrossRef] [PubMed]
  2. N. H. Farhat, D. Psaltis, A. Prata, E. Peak, “Optical implementation of the Hopfield model,” Appl. Opt. 24, 1469–1475 (1985). [CrossRef] [PubMed]
  3. F. T. S. Yu, T. Lu, X. Yang, D. A. Gregory, “Optical neural network with pocket-sized liquid-crystal televisions,” Opt. Lett. 15, 863–865 (1990). [CrossRef] [PubMed]
  4. X. Yang, T. Liu, F. T. S. Yu, “Compact optical neural network using cascaded liquid crystal television,” Appl. Opt. 29, 5223–5225 (1990). [CrossRef] [PubMed]
  5. R. A. Athale, H. H. Szu, C. B. Friedlander, “Optical implementation of associative memory with controlled nonlinearity in the correlation domain,” Opt. Lett. 11, 482–484 (1986). [CrossRef] [PubMed]
  6. Y. Owechko, G. J. Dunning, E. Marom, B. H. Soffer, “Holographic associative memory with nonlinearities in the correlation domain,” Appl. Opt. 26, 1900–1910 (1987). [CrossRef] [PubMed]
  7. S. Lin, L. Liu, Z. Wang, “Optical implementation of the 2-D Hopfield model for a 1-D associative memory,” Opt. Commun. 76, 87–91 (1989). [CrossRef]
  8. H. J. White, W. A. Wright, “Holographic implementation of a Hopfield model with discrete weights,” Appl. Opt. 27, 331–338 (1988). [CrossRef] [PubMed]
  9. D. Psaltis, D. Brady, X-G. Gu, S. Lin, “Holograph in artificial neural networks,” Nature 343, 325–330 (1990). [CrossRef] [PubMed]
  10. F. Ito, K. Kitayama, “Optical implementation of the Hopfield neural network using multiple fiber nets,” Appl. Opt. 28, 4176–4181 (1989). [CrossRef] [PubMed]
  11. M. J. Caola, “Self-Fourier function,” J. Phys. A 24, L1143–L1144 (1991). [CrossRef]
  12. A. W. Lohmann, D. Mendlovic, “Self-Fourier objects and other self-transform objects,” J. Opt. Soc. Am. A 9, 2009–2012 (1992). [CrossRef]
  13. A. Lakhlakia, “Physical fractals: self-similarity and square-integrability,” Speculat. Sci. Technol. 18, 153–156 (1995).
  14. L. Liu, “Periodic self-Fourier–Fresnel function,” J. Phys. A 27, L285–L289 (1994). [CrossRef]
  15. J. Hua, L. Liu, “Exact periodic self-Fourier–Fresnel function,” Optik 103, 75–76 (1996).
  16. J. Hua, L. Liu, G. Li, “Dual self-transform function,” J. Phys. A 30, 1–4 (1997). [CrossRef]
  17. V. Arrizon, J. Ojeda-Castaneda, “Multilevel phase gratings for array illuminators,” Appl. Opt. 33, 5925–5931 (1994). [CrossRef] [PubMed]
  18. L. Liu, X. Liu, L. Ye, “Joint Talbot effect and logic-operated moiré patterns,” J. Opt. Soc. Am. A 7, 970–976 (1990). [CrossRef]
  19. Y. Choen-Sabban, D. Joyeux, “Aberration-free nonparaxial self-imaging,” J. Opt. Soc. Am. 73, 707–719 (1983). [CrossRef]
  20. J. R. Leger, G. J. Swanson, “Efficient array illuminator using binary-optics phase plates at fractional-Talbot planes,” Opt. Lett. 15, 288–290 (1990). [CrossRef] [PubMed]
  21. V. Arrizon, E. Lopez-Olazagasti, A. Serrano-Heredia, “Talbot array illuminators with optimum compression ratio,” Opt. Lett. 21, 233–235 (1996). [CrossRef] [PubMed]
  22. E. Bonet, P. Andrés, J. C. Barreiro, A. Pons, “Self-imaging properties of periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106, 39–44 (1994). [CrossRef]
  23. A. W. Lohmann, “Array illuminators and complexity theory,” Opt. Commun. 89, 167–172 (1992). [CrossRef]
  24. C. Pan, L. Liu, “Study of fill factor in self-imaging aperture filling of phase-locked arrays,” Opt. Commun. 77, 210–214 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited