OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 20 — Jul. 10, 1998
  • pp: 4347–4356

High-Contrast Spatial Light Modulator by use of the Electroabsorption and the Electro-Optic Effects in a GaAs Single Crystal

Youichi Bitou and Takumi Minemoto  »View Author Affiliations


Applied Optics, Vol. 37, Issue 20, pp. 4347-4356 (1998)
http://dx.doi.org/10.1364/AO.37.004347


View Full Text Article

Acrobat PDF (3438 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new spatial light modulator that uses the electroabsorption and the electro-optic effects in a GaAs single crystal is proposed. The device has the same structure as a Pockels readout optical modulator and can be operated at a frame rate higher than 500 Hz. When the electroabsorption and the electro-optic effects are combined, the dynamic range (contrast ratio) becomes larger than that which results when either effect is used singly. It was experimentally confirmed that the modulator has a high contrast ratio (greater than 2000:1), high sensitivity, and consequently large γ characteristics.

© 1998 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.6120) Optical devices : Spatial light modulators

Citation
Youichi Bitou and Takumi Minemoto, "High-Contrast Spatial Light Modulator by use of the Electroabsorption and the Electro-Optic Effects in a GaAs Single Crystal," Appl. Opt. 37, 4347-4356 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-20-4347


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Q. Zhan, M. Mitsue, and T. Minemoto, “Method for multilevel threshold of binarization in a hybrid joint Fourier-transform correlator,” Appl. Opt. 32, 5786–5788 (1993).
  2. T. Minemoto, S. Numata, and K. Miyamoto, “Optical parallel logic gate using a spatial light modulator with the Pockels effect: implementation using three PROM devices,” Appl. Opt. 25, 948–955 (1986).
  3. H. Yamazaki, T. Matsunaga, S. Fukushima, and T. Kurokawa, “4 × 1204 holographic switching with an optically addressed spatial light modulator,” Appl. Opt. 36, 3063–3069 (1997).
  4. N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using high resolution LCTV-SLM,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE 1461, 291–302 (1991).
  5. T.-C. Poon, K. B. Doh, B. Schilling, K. Shinoda, Y. Suzuki, and M. H. Wu, “Holographic three-dimensional display using an electron-beam-addressed spatial light modulator,” Opt. Rev. 4, 567–571 (1997).
  6. J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, and Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2521 (1990).
  7. T. Minemoto, Y. Osugi, H. Mizukawa, and J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
  8. N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, and T. Hara, “Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator,” Appl. Opt. 33, 2804–2811 (1994).
  9. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989).
  10. B. Javidi and J. L. Horner, “Multifunction nonlinear signal processor: deconvolution and correlation,” Opt. Eng. 28, 837–843 (1989).
  11. B. Javidi, Q. Tang, D. A. Gregory, and T. D. Hudson, “Experiments on nonlinear joint transform correlator using an optically addressed spatial light modulator in the Fourier plane,” Appl. Opt. 30, 1772–1776 (1991).
  12. R. A. Sprague and P. Nisenson, “The PROM—a status report,” Opt. Eng. 17, 256–266 (1978).
  13. Y. Osugi, A. Honda, and T. Minemoto, “A Bi12SiO20 spatial light modulator for coherent light,” Optics 25, 48–54 (1996) (in Japanese).
  14. Y. Bitou and T. Minemoto, “Fast response PROM using GaAs single crystal,” in Spatial Light Modulators, G. Burdge and S. Esener, eds. Vol. 14 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 147–154.
  15. B. O. Seraphin and N. Bottka, “Franz–Keldysh effect of the refractive index in semiconductors,” Phys. Rev. 139, 560–565 (1965).
  16. K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev. 130, 2204–2207 (1963).
  17. M. Balkanski, ed., Handbook on Semiconductors (North-Holland, Amsterdam, 1980), Vol. 2, pp. 140–150.
  18. T. E. Van Eck, L. M. Walpita, W. S. C. Chang, and H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
  19. G. E. Stillman, C. M. Wolte, C. O. Bozler, and J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
  20. R. H. Kingston and F. J. Leonberger, “Fourier transformation using an electroabsorptive CCD spatial light modulator,” IEEE J. Quantum. Electron. QE-19, 1443–1451 (1983).
  21. T. Y. Hsu, W. Y. Wu, and U. Efron, “Amplitude and phase modulation in a 4 μm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
  22. T. L. Worchesky, K. J. Ritter, R. Martin, and B. Lane, “Large arrays of spatial light modulators hybridized to silicon integrated circuits,” Appl. Opt. 35, 1180–1185 (1996).
  23. Y. Bitou, H. Ohta, and T. Minemoto, “High-speed and high-contrast spatial light modulator that uses electroabsorption in a GaAs single crystal,” Appl. Opt. 37, 1377–1385 (1998).
  24. R. K. Willardson and A. C. Beer, eds., Semiconductors and Semimetals (Academic, San Diego, Calif., 1988), Vol. 26, pp. 102–110.
  25. A. Alping and L. A. Coldren, “Electrorefraction in GaAs and InGaAsP and its application to phase modulators,” J. Appl. Phys. 61, 2430–2433 (1987).
  26. A. Partovi and E. M. Garmire, “Band-edge photorefractivity in semiconductors: theory and experiment,” J. Appl. Phys. 69, 6885–6898 (1991).
  27. K. Sayyah, A. Au, U. Efron, and T. Yamazaki, “High resolution liquid-crystal-based spatial light modulator with a thin crystalline silicon photosubstrate structure,” Appl. Opt. 35, 5761–5764 (1996).
  28. G. B. Cohen, R. Pogreb, K. Vinokur, and D. Davidov, “Spatial light modulator based on a deformed-helix ferroelectric liquid crystal and a thin a-Si:H amorphous photoconductor,” Appl. Opt. 36, 455–459 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited