OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 20 — Jul. 10, 1998
  • pp: 4389–4398

Four-Channel, 8 x 8 Bit, Two-Dimensional Parallel Transmission by use of Space-Code-Division Multiple-Access Encoder and Decoder Modules

Moriya Nakamura, Ken-ichi Kitayama, Yasunori Igasaki, and Keiji Kaneda  »View Author Affiliations


Applied Optics, Vol. 37, Issue 20, pp. 4389-4398 (1998)
http://dx.doi.org/10.1364/AO.37.004389


View Full Text Article

Acrobat PDF (734 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate four-channel multiplexing of 64-bit (8 × 8) two-dimensional (2-D) parallel data links on the basis of optical space–code-division multiple access (CDMA) by using new modules of optical spatial encoders and a decoder with a new high-contrast 9-m-long image fiber with 3 × 104 cores. Each 8 × 8 bit plane (64-bit parallel data) is optically encoded with an 8 × 8, 2-D optical orthogonal signature pattern. The encoded bit planes are spatially multiplexed and transmitted through an image fiber. A receiver can recover the intended input bit plane by means of an optical decoding process. This result should encourage the application of optical space–CDMA to future high-throughput 2-D parallel data links connecting massively parallel processors.

© 1998 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications
(200.4650) Optics in computing : Optical interconnects

Citation
Moriya Nakamura, Ken-ichi Kitayama, Yasunori Igasaki, and Keiji Kaneda, "Four-Channel, 8 x 8 Bit, Two-Dimensional Parallel Transmission by use of Space-Code-Division Multiple-Access Encoder and Decoder Modules," Appl. Opt. 37, 4389-4398 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-20-4389


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Y. M. Wong, D. J. Muehlner, C. C. Faudskar, D. B. Buchholz, M. Fishteyn, J. L. Brandner, W. J. Parzygnat, R. A. Morgan, T. Mullally, R. E. Leibenguth, G. D. Guth, M. W. Focht, K. G. Glogovsky, J. L. Zilko, J. V. Gates, P. J. Anthony, B. H. Tyrone, Jr., T. J. Ireland, D. H. Lewis, Jr., D. F. Smith, S. F. Nati, D. K. Lewis, D. L. Rogers, H. A. Aispain, S. M. Gowda, S. G. Walker, Y. H. Kwark, R. J. S. Bates, D. M. Kuchta, and J. D. Crow, “Technology development of a high-density 32-channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol. 13, 995–1016 (1995).
  2. H. Kosaka, M. Kajita, M. Yamada, Y. Sugimoto, K. Kurata, T. Tanabe, and Y. Kasukawa, “2D alignment free VCSEL-array module with push/pull fiber connector,” Electron. Lett. 32, 1991–1992 (1996).
  3. T. Yoshikawa, H. Matsuoka, T. Yokota, and J. Shimada, “Parallel optical interconnection for massively parallel processor RWC-1,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections (MPPOI’97) (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 4–9.
  4. K. Kaede, T. Uji, T. Nagahori, T. Suzaki, T. Torikai, J. Hayashi, I. Watanabe, M. Itoh, H. Honmou, and M. Shikada, “12-channel parallel optical-fiber transmission using a low-drive current 1.3-μm LED array and a p-i-n PD array,” IEEE J. Lightwave Technol. 8, 883–888 (1990).
  5. K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Select. Topics Commun. 12, 762–772 (1994).
  6. K. Kitayama, M. Nakamura, Y. Igasaki, and K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” IEEE J. Lightwave Technol. 15, 202–212 (1997).
  7. M. Nakamura and K. Kitayama, “System performances of optical space–code-division multiple-access-based fiber-optic two-dimensional parallel data links,” Appl. Opt. (to be published).
  8. Y. Li, T. Wang, H. Kosaka, S. Kawai, and K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
  9. H. Kosaka, M. Kajita, Y. Li, and Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface-emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
  10. K. Koyabu, F. Ohira, T. Yamamoto, and S. Matsuo, “Novel high-density collimator module,” in Optical Fiber Communication Conference and International Conference on Integrated Optics and Optical Fiber Communication: OFC/IOOC, Vol. 4 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 2–3.
  11. Y. Li, Y. Pan, and S. Q. Zheng, “A pipelined TDM optical bus with conditional delays,” in Proceedings of the Fourth Interna- tional Conference on Massively Parallel Processing Using Optical Interconnections (MPPOI’97), (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 196–201.
  12. E. J. Harder, S.-K. Lee, and H.-A. Choi, “On wavelength assignment in WDM optical networks,” in Proceedings of the Fourth International Conference on Massively Parallel Processing Using Optical Interconnections (MPPOI’97), (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 32–38.
  13. J. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: a tutorial,” Proc. IEEE 78, 826–855 (1990).
  14. P. Prucnal, M. A. Santoro, and T. R. Fan, “Spread spectrum fiber-optic local network using optical processing,” IEEE J. Lightwave Technol. LT-4, 547–554 (1986).
  15. S. Tamura, S. Nakano, and K. Okazaki, “Optical code-multiplex transmission by gold sequences,” IEEE J. Lightwave Technol. LT-3, 121–127 (1985).
  16. J. A. Salehi, “Emerging optical code-division multiple access communications systems,” IEEE Network 3, 31–39 (1993).
  17. P. E. Green, Jr., Fiber Optic Networks (Prentice-Hall, Englewood Cliffs, N.J., 1993).
  18. J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part I: fundamental principles,” IEEE Trans. Commun. 37, 824–833 (1989).
  19. J. A. Salehi and C. A. Brackett, “Code division multiple-access techniques in optical fiber networks—Part II: systems performance analysis,” IEEE Trans. Commun. 37, 834–842 (1989).
  20. G.-C. Yang and T. Fuja, “Optical orthogonal codes with unequal auto- and cross-correlation constraints,” IEEE Trans. Inf. Theory 41, 96–106 (1995).
  21. G.-C. Yang and W. C. Kwong, “Two-dimensional spatial signature patterns,” IEEE Trans. Commun. 44, 184–191 (1996).
  22. M. Ishikawa, “Optoelectronic parallel computing system with reconfigurable optical interconnection,” in Vol. CR62 of SPIE Critical Review Series, Optoelectronic Interconnects and Packaging, R. T. Chen and P. S. Guilfoyle, eds. (SPIE Press, Bellingham, Wash., 1996), pp. 156–175.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited