OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 20 — Jul. 10, 1998
  • pp: 4405–4418

Recoded and nonrecoded trinary signed-digit adders and multipliers with redundant-bit representations

Abdallah K. Cherri and Mohammed S. Alam  »View Author Affiliations

Applied Optics, Vol. 37, Issue 20, pp. 4405-4418 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (242 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Highly-efficient two-step recoded and one-step nonrecoded trinary signed-digit (TSD) carry-free adders–subtracters are presented on the basis of redundant-bit representation for the operands’ digits. It has been shown that only 24 (30) minterms are needed to implement the two-step recoded (the one-step nonrecoded) TSD addition for any operand length. Optical implementation of the proposed arithmetic can be carried out by use of correlation- or matrix-multiplication-based schemes, saving 50% of the system memory. Furthermore, we present four different multiplication designs based on our proposed recoded and nonrecoded TSD adders. Our multiplication designs require a small number of reduced minterms to generate the multiplication partial products. Finally, a recently proposed pipelined iterative-tree algorithm can be used in the TSD adders–multipliers; consequently, efficient use of all available adders can be made.

© 1998 Optical Society of America

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(200.4540) Optics in computing : Optical content addressable memory processors
(200.4560) Optics in computing : Optical data processing
(200.4860) Optics in computing : Optical vector-matrix systems

Original Manuscript: August 18, 1997
Revised Manuscript: January 22, 1998
Published: July 10, 1998

Abdallah K. Cherri and Mohammed S. Alam, "Recoded and nonrecoded trinary signed-digit adders and multipliers with redundant-bit representations," Appl. Opt. 37, 4405-4418 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. L. Hurst, “Multiple-valued threshold logic: its status and its realization,” Opt. Eng. 25, 44–53 (1986). [CrossRef]
  2. N. S. Szabo, R. T. Tanaka, Residue Arithmetic and Its Applications to Computer Technology (McGraw-Hill, New York, 1967).
  3. D. Psaltis, D. Casasent, “Optical residue arithmetic: a correlator approach,” Appl. Opt. 18, 163–171 (1979). [CrossRef] [PubMed]
  4. A. Hwang, Y. Tsunida, J. W. Goodman, S. Ishihara, “Optical computation using residue arithmetic,” Appl. Opt. 18, 149–162 (1979). [CrossRef]
  5. K. Hwang, A. Louri, “Optical multiplication and division using modified signed-digit symbolic substitution,” Opt. Eng. 28, 364–372 (1989). [CrossRef]
  6. M. M. Mirsalehi, T. K. Gaylord, “Logical minimization of multilevel coded functions,” Appl. Opt. 25, 3078–3088 (1986). [CrossRef] [PubMed]
  7. M. S. Alam, Y. Ahuja, A. K. Cherri, A. Chatterjea, “Symmetrically recoded quaternary signed-digit arithmetic using a shared content-addressable memory,” Opt. Eng. 35, 1141–1149 (1996). [CrossRef]
  8. T. K. Gaylord, M. M. Mirsalehi, “Truth-table look-up processing: number representation, multilevel coding, and logical minimization,” Opt. Eng. 25, 22–33 (1986). [CrossRef]
  9. M. S. Alam, “Parallel optical computing using recoded trinary signed-digit numbers,” Appl. Opt. 33, 4392–4397 (1994). [CrossRef] [PubMed]
  10. A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE Trans. Electron. Comput. EC-10(3), 389–400 (1961).
  11. A. K. Cherri, M. A. Karim, “Modified signed digit arithmetic using an efficient symbolic substitution,” Appl. Opt. 27, 3824–3827 (1988). [CrossRef] [PubMed]
  12. R. P. Bocker, B. L. Drake, M. E. Lasher, T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986). [CrossRef] [PubMed]
  13. A. A. S. Awwal, M. N. Islam, M. A. Karim, “Modified signed-digit trinary arithmetic by using symbolic substitution,” Appl. Opt. 31, 1687–1694 (1994). [CrossRef]
  14. A. A. S. Awwal, “Recoded signed-digit binary addition–subtraction using opto-electronic symbolic substitution,” Appl. Opt. 31, 3205–3208 (1992). [CrossRef] [PubMed]
  15. A. K. Cherri, “Symmetrically recoded modified signed-digit optical addition and subtraction,” Appl. Opt. 33, 4378–4382 (1994). [CrossRef] [PubMed]
  16. Y. Li, G. Eichmann, “Conditional symbolic modified-signed-digit arithmetic using optical content-addressable memory logic elements,” Appl. Opt. 26, 2328–2333 (1987). [CrossRef] [PubMed]
  17. K. Hwang, D. K. Panda, “High-radix symbolic substitution and superposition techniques for optical matrix algebraic computations,” Opt. Eng. 31, 2422–2433 (1992). [CrossRef]
  18. A. K. Cherri, N. I. Khachab, “Canonical quaternary signed-digit arithmetic using optoelectronics symbolic substitution,” Opt. Laser Technol. 28, 397–403 (1996). [CrossRef]
  19. G. A. De Biase, A. Massini, “High efficiency redundant binary number representations for parallel arithmetic on optical computers,” Opt. Laser Technol. 26, 219–224 (1994). [CrossRef]
  20. M. S. Alam, M. A. Karim, A. A. S. Awwal, J. J. Westerkamp, “Optical processing based on conditonal higher-order trinary modified signed-digit symbolic substitution,” Appl. Opt. 31, 5614–5621 (1992). [CrossRef] [PubMed]
  21. R. Arrathoon, S. P. Kozaitis, “Shadow casting for multiple-valued associated logic,” Opt. Eng. 25, 29–37 (1986). [CrossRef]
  22. A. Huang, “Parallel algorithms for optical digital computers,” in Proceedings, Tenth International Optical Computing Conference, S. Horvitz, ed. (IEEE Computer Society and International Optical Conference, New York, 1983), pp. 13–17. [CrossRef]
  23. K. H. Brenner, A. Huang, N. Streibel, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986). [CrossRef] [PubMed]
  24. B. Ha, Y. Li, “Parallel modified signed-digit arithmetic using an optoelectronic shared content-addressable-memory processor,” Appl. Opt. 33, 3647–3662 (1994). [CrossRef] [PubMed]
  25. Y. Li, D. H. Kim, A. Kostrzewski, G. Eichmann, “Content-addressable-memory-based single-stage optical modified-signed-digit arithmetic,” Opt. Lett. 14, 1254–1256 (1989). [CrossRef] [PubMed]
  26. S. Barua, “Single-stage optical adder/subtracter,” Opt. Eng. 30, 265–270 (1991). [CrossRef]
  27. H. Huang, M. Itoh, T. Yatagai, “Modified signed-digit arithmetic based on redundant bit representation,” Appl. Opt. 33, 6146–6156 (1994). [CrossRef] [PubMed]
  28. D. P. Casasent, P. Woodford, “Symbolic substitution modified signed-digit optical adder,” Appl. Opt. 33, 1498–1506 (1994). [CrossRef] [PubMed]
  29. K. Al-Ghoneim, D. P. Casasent, “High-accuracy pipelined iterative-tree optical multiplication,” Appl. Opt. 33, 1517–1527 (1994). [CrossRef] [PubMed]
  30. V. Chandran, T. F. Krile, J. F. Walkup, “Optical techniques for real-time binary multiplication,” Appl. Opt. 25, 2272–2276 (1986). [CrossRef] [PubMed]
  31. Y. Li, B. Ha, J. G. Eichmann, “Fast digital optical multiplication using an array of binary symmetric logic counters,” Appl. Opt. 30, 531–539 (1991). [CrossRef] [PubMed]
  32. S. Barua, “High-speed multiplier for digital signal processing,” Opt. Eng. 30, 1997–2002 (1991). [CrossRef]
  33. H. Huang, L. Liu, Z. Wang, “Parallel multiple matrix multiplication using an orthogonal shadow-casting and imaging system,” Opt. Lett. 15, 1085–1087 (1990). [CrossRef] [PubMed]
  34. L. Liu, G. Li, Y. Yin, “Optical complex matrix–vector multiplication with negative binary inner products,” Opt. Lett. 19, 1085–1087 (1994). [CrossRef]
  35. F. Li, M. Morisue, “A novel Josephson adder without carry propagation delay,” IEEE Trans. Appl. Superconduct. 3, 2683–2686 (1993). [CrossRef]
  36. T. Stouraitis, C. Chen, “Hybrid signed-digit logarithmic number system processor,” IEE Proc. E 140, 205–210 (1993).
  37. W. Balakrishnan, N. Burgess, “Very-high-speed VLSI 2s-complement multiplier using signed binary digits,” IEE Proc. Comput. Digit. Technol. 71, 29–34 (1994).
  38. N. Takagi, S. Yajima, “Modular multiplication hardware algorithms with redundant representation and their application to RSA cryptosystem,” IEEE Trans. Comput. 41, 887–891 (1992). [CrossRef]
  39. P. Srinivasan, F. E. Petry, “Constant-division algorithms,” IEE Proc. Comput. Digit. Technol. 141, 334–340 (1994). [CrossRef]
  40. N. Burgess, “Radix-2 SRT division algorithm with simple quotient digit selection,” Electron. Lett. 27, 1910–1911 (1991). [CrossRef]
  41. M. M. Hossain, J. U. Ahmed, A. A. S. Awwal, “Efficient electronic implementation of modified signed digit trinary carry free adder,” Proc. IEEE 1, 185–189 (1993).
  42. J. U. Ahmed, A. A. S. Awwal, “Multiplier design using RBSD number system,” Proc. IEEE 1, 180–184 (1993).
  43. K. H. Brenner, A. Huang, “Optical implementations of the perfect shuffle interconnections,” Appl. Opt. 27, 135–137 (1988). [CrossRef] [PubMed]
  44. M. S. Alam, M. A. Karim, “Programmable optical perfect shuffle interconnection network using Fredkin gates,” Microwave Opt. Technol. Lett. 5, 330–333 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited