OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 20 — Jul. 10, 1998
  • pp: 4457–4467

Optimal Wave-front Reconstruction for a Coherent Diffracted Field

William W. Arrasmith, Michael Roggemann, and Byron Welsh  »View Author Affiliations


Applied Optics, Vol. 37, Issue 20, pp. 4457-4467 (1998)
http://dx.doi.org/10.1364/AO.37.004457


View Full Text Article

Acrobat PDF (259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase differences in the far field of a coherently illuminated object are used to estimate the two-dimensional phase in the measurement plane of an imaging system. A previously derived phase-correlation function is used in a minimum-variance phase-estimation algorithm to map phase-difference measurements optimally to estimates of the phase on a grid of points in the measurement plane. Theoretical and computer-simulation comparisons between the minimum-variance phase estimator and conventional least-squares estimators are made. The minimum-variance phase estimator produces a lower aperture-averaged mean-square phase error for all values of a sampling parameter β.

© 1998 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(100.0100) Image processing : Image processing
(100.3010) Image processing : Image reconstruction techniques
(110.1650) Imaging systems : Coherence imaging

Citation
William W. Arrasmith, Michael Roggemann, and Byron Welsh, "Optimal Wave-front Reconstruction for a Coherent Diffracted Field," Appl. Opt. 37, 4457-4467 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-20-4457


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. A. Hutchin, “Sheared coherent interferometric photography: a technique for lensless imaging,” Proc. IEEE 2029, 161–168 (1993).
  2. D. L. Fried and J. L. Vaughn, “Branch cuts in the phase function,” Appl. Opt. 31, 2865–2882 (1992).
  3. M. S. Scivier and M. A. Fiddy, “Phase ambiguities and the zeros of multidimensional band-limited functions,” J. Opt. Soc. Am. A 2, 693–697 (1985).
  4. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).
  5. H. Takajo and T. Takahashi, “Least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A 5, 416–425 (1988).
  6. I. Freund, “Optical vortices in Gaussian random wave fields: statistical probability densities,” J. Opt. Soc. Am. A 11, 1644–1652 (1994).
  7. J. L. Marroquin, M. Tapia, R. Rodriguez-Vera, and M. Servin, “Parallel algorithms for phase unwrapping based on Markov random field models,” J. Opt. Soc. Am. A 12, 2578–2585 (1995).
  8. G. Fornaro, G. Franceschetti, R. Lanari, and E. Sansosti, “Robust phase-unwrapping techniques: a comparison,” J. Opt. Soc. Am. A 13, 2355–2366 (1996).
  9. B. M. Welsh and C. S. Gardner, “Performance analysis of adaptive-optics systems using laser guide stars and slope sensors,” J. Opt. Soc. Am A 6, 1913–1923 (1989).
  10. S. M. Brown, D. C. Ehn, J. W. Hardy, R. Hutchin, P. J. Maihot, A. S. Menikoff, M. B. Michalik, and S. Paley, “Reconstructor development study,” Tech. Rep. F30602–86-C-0010 (Itek Optical Systems, Lexington, Mass., 1987).
  11. E. P. Wallner, “Optimal wave-front correction using slope measurements,” J. Opt. Soc. Am. 73, 1771–1776 (1983).
  12. M. C. Roggemann, “Optical performance of fully and partially compensated adaptive optics systems using least-squares and minimum variance phase reconstructors,” Comput. Elect. Eng. 18, 451–466 (1992).
  13. E. P. Wallner, “Comparison of wavefront sensor configurations using optimal reconstruction and correction,” in Wavefront Sensing, N. Bareket and C. L. Koliopoulos, eds., Proc. SPIE 351, 42–53 (1982).
  14. R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics (Macmillan, New York, 1978).
  15. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, New York, 1975).
  16. D. Middleton, An Introduction to Statistical Communication Theory (McGraw-Hill, New York, 1960).
  17. D. K. C. Mac Donald, “Some statistical properties of random noise,” Proc. Cambridge Phil. Soc. 45, 368–372 (1949).
  18. J. W. Goodman, Statistical Optics (Wiley-Interscience, New York, 1985).
  19. M. C. Roggemann, “Limited degree-of-freedom adaptive optics and image reconstruction,” Appl. Opt. 30, 4227–4233 (1991).
  20. D. G. Voelz, J. D. Gonglewski, and P. S. Idell, “SCIP computer simulation and laboratory verification,” in Digital Image Recovery and Synthesis II, P. Idell, ed., Proc. SPIE 2029, 169–176 (1993).
  21. B. L. Ellerbroek, “Comparison of least squares and minimal variance wavefront reconstruction for turbulence compensation in the presence of noise,” Tech. Rep. TR-721R (Optical Science Company, Placentia, Calif., 1986).
  22. R. A. Hudgin, “Wavefront estimation for compensated imaging,” J. Opt. Soc. Am. 67, 375–378 (1977).
  23. D. L. Fried, “Least-squares fitting a wavefront distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370–375 (1977).
  24. B. R. Hunt, “Matrix formulation of the reconstruction of phase valued from phase differences,” J. Opt. Soc. Am. 69, 393–399 (1979).
  25. S. Lowenthal and H. Arsenault, “Image formation for coherent diffuse objects: statistical properties,” J. Opt. Soc. Am. 60, 1478–1483 (1970).
  26. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited