OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 21 — Jul. 20, 1998
  • pp: 4525–4535

Density of turbulence-induced phase dislocations

Valerii V. Voitsekhovich, Dmitri Kouznetsov, and Dmitri Kh. Morozov  »View Author Affiliations

Applied Optics, Vol. 37, Issue 21, pp. 4525-4535 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (323 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Under certain conditions, light-wave propagation through turbulent media causes a specific type of phase distortion: so-called phase dislocations. A salient feature of phase dislocations is an appearance of zones where the phase turns out to be a multivalued function of coordinates. The problem of turbulence-induced phase dislocations is considered. Both a theoretical treatment and simulations based on the numerical solution of a parabolic equation are used for estimation of the dislocation density. Various turbulence conditions, ranging from weak to very strong ones, are considered as well as the dependences on wavelength, and the inner scales of turbulence are presented. An empirical formula for the dislocation density suitable for a wide range of turbulent and propagation conditions is derived. The results obtained can be useful for both atmospheric and adaptive optics.

© 1998 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(030.6600) Coherence and statistical optics : Statistical optics
(030.7060) Coherence and statistical optics : Turbulence

Original Manuscript: October 14, 1997
Revised Manuscript: February 4, 1998
Published: July 20, 1998

Valerii V. Voitsekhovich, Dmitri Kouznetsov, and Dmitri Kh. Morozov, "Density of turbulence-induced phase dislocations," Appl. Opt. 37, 4525-4535 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Nye, M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165–190 (1974). [CrossRef]
  2. M. V. Berry, “Disruption of wavefront: statistics of dislocations in incoherent Gaussian random waves,” J. Phys. A 11, 27–37 (1978). [CrossRef]
  3. N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. Pilipetskii, V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 195–199 (1981).
  4. N. B. Baranova, B. Ya. Zel’dovich, “Dislocations of the wave-front surface and zeros of the amplitude,” Zh. Eksp. Teor. Fiz. 80, 1789–1797 (1981).
  5. N. B. Baranova, A. V. Mamaev, N. Pilipetskii, V. V. Shkukov, B. Ya. Zel’dovich, “Wave-front dislocations: topological limitations for adaptive systems with phase conjugation,” J. Opt. Soc. Am. 73, 525–528 (1983). [CrossRef]
  6. J. F. Nye, J. V. Hajnal, J. H. Hannay, “Phase saddles and dislocations in two-dimensional waves such as tides,” Proc. R. Soc. London Ser. A 417, 7–20 (1988). [CrossRef]
  7. F. T. Arecchi, G. Giacomelli, P. L. Ramazza, S. Residori, “Vortices and defect statistics in two-dimensional optical chaos,” Phys. Rev. Lett. 67, 3749–3752 (1991). [CrossRef] [PubMed]
  8. I. Freund, N. Shvartsman, “Wave-field phase singularities: the sign principle,” Phys. Rev. A 50, 5164–5172 (1994). [CrossRef] [PubMed]
  9. N. Shvartsman, I. Freund, “Vortices in random wave fields: nearest neighbor anticorrelations,” Phys. Rev. Lett. 72, 1008–1011 (1994). [CrossRef] [PubMed]
  10. I. Freund, “Optical vortices in Gaussian random wave fields: statistical probability densities,” J. Opt. Soc. Am. A 11, 1644–1652 (1994). [CrossRef]
  11. I. Freund, N. Shvartsman, “Structural correlations in Gaussian random wave fields,” Phys. Rev. E 51, 3770–3773 (1995). [CrossRef]
  12. I. Freund, “Saddles, singularities, and extrema in random fields,” Phys. Rev. E 52, 2348–2360 (1995). [CrossRef]
  13. I. Freund, “Amplitude topological singularities in random electromagnetic wavefields,” Phys. Lett. A 198, 139–144 (1995). [CrossRef]
  14. N. R. Heckenberg, M. Vaupel, J. T. Malos, C. O. Weiss, “Optical-vortex pair creation and annichilation and helical astigmatism of a nonplanar ring resonator,” Phys. Rev. A 54, 2369–2378 (1996). [CrossRef] [PubMed]
  15. E. Abramochkin, V. Volostnikov, “Spiral-type beams: optical and quantum aspects,” Opt. Commun. 125, 302–323 (1996). [CrossRef]
  16. I. Freund, “Vortex derivatives,” Opt. Commun. 137, 118–126 (1997). [CrossRef]
  17. D. L. Fried, J. L. Vaughn, “Branch cuts in the phase function,” Appl. Opt. 31, 2865–2882 (1992). [CrossRef] [PubMed]
  18. V. Lukin, B. Fortes, “The influence of wave front dislocations on phase conjugation instability at thermal blooming compensation,” Atmos. Oceanic Opt. 8, 223–230 (1995).
  19. V. A. Tartakovski, N. N. Mayer, “Phase dislocations and minimal phase representation of the wave function,” Atmos. Oceanic Opt. 8, 231–235 (1995).
  20. B. V. Fortes, V. Lukin, “The effects of wavefront dislocations on the atmospheric adaptive optical systems performance,” in Optics for Science and New Technology. Part II. Lasers and Laser Spectroscopy, J. Chang, J. Lee, C. Nan, eds., Proc. SPIE2778, 1002–1003 (1996).
  21. V. Aksenov, V. Banakh, O. Tikhomirova, “Potential and vortex features of optical speckle fields,” Atmos. Oceanic Opt. 9, 1450–1456 (1996).
  22. V. A. Tartakovski, N. N. Mayer, “Focal spot in the presence of phase dislocations,” Atmos. Oceanic Opt. 9, 1457–1460 (1996).
  23. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 2, Chap. 20.
  24. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1984), Chap. 11.
  25. V. I. Tatarski, The Effects of the Turbulent Atmosphere on Wave Propagation, NSF Report TT-68-50464 (U.S. National Science Foundation, Washington, D.C., 1968).
  26. J. M. Martin, S. M. Flatte, “Intensity images and statistics from numerical simulation of wave propagation through 3-D random media,” Appl. Opt. 27, 2111–2126 (1988). [CrossRef] [PubMed]
  27. R. L. Fante, “Propagation of electromagnetic waves through turbulent plasma using transport theory,” IEEE Trans. Antennas Propag. AP-21, 750–755 (1975).
  28. G. Parry, P. N. Pusey, “K distribution in atmospheric propagation of laser light,” J. Opt. Soc. Am. 69, 796–798 (1979). [CrossRef]
  29. A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series (Gordon & Breach, New York, 1990), Vol. 3, p. 40.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited