OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 21 — Jul. 20, 1998
  • pp: 4678–4689

Determination of the Atmospheric-Water-Vapor Content in the 940-nm Absorption Band by Use of Moderate Spectral-Resolution Measurements of Direct Solar Irradiance

Victoria E. Cachorro, Pilar Utrillas, Ricardo Vergaz, Plinio Durán, Angel M. de Frutos, and Jose A. Martinez-Lozano  »View Author Affiliations

Applied Optics, Vol. 37, Issue 21, pp. 4678-4689 (1998)

View Full Text Article

Acrobat PDF (264 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have analyzed three methods that can be used to determine the integrated water vapor of the atmosphere in the 940-nm band by means of modeled and measured direct solar spectral irradiance. The experimental irradiance data were obtained with a commercial LI-COR 1800 spectroradiometer, based on a monochromator system, of high to moderate spectral resolution (6 nm) in the 300–1100-nm range. The modeled data are based on monochromatic approaches to determine atmospheric transmittance constituents; for those of water vapor we used the lowtran7 model. The first method is a curve-fitting procedure that makes use of the entire shape band absorption information to retrieve a unique water-vapor value. The second method makes use of the monochromatic approach of the absorption transmittance formula to determine the amount of water vapor at each wavelength of the absorption band, and the third method is the classic differential absorption technique suitably applied to our data. Spectral analysis showed the advantages and disadvantages of each method, such as problems linked to the various spectral resolutions of the experimental and the modeled data, the width of the spectral range used to define the water-vapor absorption band, and the dependence of the retrieval on the choice of the two selected wavelengths in the last-named technique. All these problems were considered so they could be avoided or minimized and the associated errors estimated. We used the methods to determine water-vapor values for the period from March to November 1995 at a rural station in Vallodolid, Spain, allowing for the evaluation of the differences in real monitoring conditions. Finally, the contribution of continuum absorption was also evaluated, yielding lower water-vapor values between 13 and 30%. These differences were considerably greater than those that were due to the problems that we have just enumerated.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.7340) Atmospheric and oceanic optics : Water
(350.6050) Other areas of optics : Solar energy

Victoria E. Cachorro, Pilar Utrillas, Ricardo Vergaz, Plinio Durán, Angel M. de Frutos, and Jose A. Martinez-Lozano, "Determination of the Atmospheric-Water-Vapor Content in the 940-nm Absorption Band by Use of Moderate Spectral-Resolution Measurements of Direct Solar Irradiance," Appl. Opt. 37, 4678-4689 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Penndorf, “Analysis of ozone and water vapor field measurements data,” Rep. FAA-EE-78–29 (Office of Environment and Energy, U.S. Department of Transportation, Washington, D.C., 1978).
  2. A. Arking, “Absorption of solar energy in the atmosphere: discrepancy between model and observations,” Science 273, 779–792 (1996).
  3. S. Rowland and I. S. A. Isaksen, eds., The Changing Atmosphere (Wiley, London, 1988).
  4. W. E. Carter, G. Mader, and M. Schenewerk, “Monitoring atmospheric water vapor with the global positioning system,” presented at the AGU Chapman Conference on Water Vapor in the Climate System, Jekyll, Ga. (personal communication, 1994).
  5. D. B. Call, “A new GPS rawindsonde system” (Atmospheric Instrumentation Research, Inc. 8401 Baseline Road, Boulder, Colo., 80303, personal communication, 1995).
  6. F. E. Fowle, “The spectroscopic determination of aqueous vapor,” Astrophys. J. 35, 149–162 (1912).
  7. D. M. Gates, “Infrared determination of precipitable water vapor in a vertical columna of the Earth’s atmosphere,” J. Meteorol. 13, 369–375 (1956).
  8. D. M. Gates and W. J. Harrop, “Infrared transmission of the atmosphere to solar radiation,” Appl. Opt. 2, 887–898 (1963).
  9. F. E. Volz, “Economical multispectral Sun photometer for measurements of aerosol extinction from 0.44 μm to 1.6 μm and precipitable water,” Appl. Opt. 13, 1732–1733 (1974).
  10. K. J. Thome, B. M. Herman, and J. A. Reagan, “Determination of precipitable water from solar transmission,” J. Appl. Meteorol. 31, 157–165 (1992).
  11. R. Frouin, P. Deschamps, and P. Leconte, “Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification,” J. Appl. Meteorol. 29, 448–460 (1990).
  12. D. Chesters, L. W. Uccelini, and W. D. Robinson, “Low level water vapor field from the VISSR atmospheric sounder (VAS) split window channels,” J. Clim. Appl. Meteorol. 22, 725–743 (1983).
  13. J. Susskind, J. Rosenfield, and D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
  14. M. Arbelo, F. J. Exposito, and F. Herrera, “Comparison of total water vapor content obtained from TOVS-NOAA with radiosoundings data in Canary Islands zone,” in Atmospheric Sensing and Modeling II, R. P. Santer, ed., Proc. SPIE 2582, 178–184 (1995).
  15. K. J. Thome, M. W. Smith, M. Palmer, and J. A. Reagan, “Three-channel solar radiometer for the determination of atmospheric columnar water vapor,” Appl. Opt. 33, 5811–5819 (1994).
  16. B. N. Holben and T. Eck, “Precipitable water in the Sahel measured using sunphotometry,” Agric. Forest Meteorol. 52, 95–107 (1990).
  17. J. J. Michalsky, J. C. Liljegren, and L. C. Harrison, “A comparison of sun photometer of total column water vapor and ozone to standard measures of same at the southern great plains atmospheric radiation measurements site,” J. Geophys. Res. 100, 25,995–26,003 (1995).
  18. R. N. Halthore, T. F. Eck, B. N. Holben, and B. L. Markham, “Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band,” J. Geophys. Res. 100, 4343–4352 (1997).
  19. V. E. Cachorro, A. M. de Frutos, and J. L. Casanova, “Determination of total vertical water vapor in the atmosphere,” Atmos. Res. 20, 67–74 (1986).
  20. C. Cuomo, F. Espósito, and G. Pavese, “A differential absorption technique, in the near infrared to determine precipitable water,” Atmos. Environ. 28, 977–987 (1994).
  21. O. B. Vasilyev, A. Leyva, A. Muhila, M. Valdes, R. Peralta, A. Kovalenko, R. Welch, T. A. Berendes, V. Yu. Isakov, Y. P. Kulikovsky, S. S. Sokolov, N. N. Strepanov, S. S. Gulidov, and W. Hoyningen-Huene, “Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory,” Appl. Opt. 34, 4426–4436 (1995).
  22. A. Tebo, “Imaging spectrometer for the mission to planet Earth,” OE Rep. 157 (SPIE Press, Billingham, Wash., 1997).
  23. B. C. Gao and A. F. H. Goetz, “Column atmospheric water vapor retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
  24. G. Vane, R. O. Green, T. G. Chrien, H. T. Enmark, E. G. Hansen, and W. M. Porter, “The airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sensing Environ. 44, 127–143 (1993).
  25. C. J. Bruegge, J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, and G. Toon, “Water vapor column abundance retrieval during FIFE,” J. Geophys. Res. 97, 18,759–18,768 (1992).
  26. V. Carrère and J. E. Conel, “Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm—Sensitivity analysis and application to airborne visible/infrared imaging spectrometer (AVIRIS) data,” Remote Sensing Environ. 44, 179–204 (1993).
  27. Y. J. Kaufman, and Bo-C. Gao, “Remote sensing of water vapor in the near IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sensing 30, 871–884 (1992).
  28. M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sensing 30, 2–27 (1992).
  29. B. Barsch, S. Bakan, and J. Fischer, “Remote sensing of water vapor within the solar spectrum,” in Atmospheric Sensing and Modeling I, R. P. Santer, ed., Proc. SPIE 2311, 197–206 (1995).
  30. B. Smith, K. J. Thome, P. Demoulin, R. Peter, C. Maetzler, and J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).
  31. D. Schaepfer, C. C. Borel, J. Keller, and K. I. Itten, “Atmospheric pre-corrected differential absorption technique to retrieve columnar water vapor: application to AVIRIS 91/95 data,” in Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, Vol. 1, (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 209–217.
  32. P. Durán, “Medidas espectroradiometricas para la determinación de componentes atmosféricos (ozono, vapor de agua y aerosoles) y la modelización del intercambio radiativo en la atmósfera,” Ph.D. dissertation (Universidad de Valladolid, Valladolid, Spain, 1997).
  33. P. Utrillas, “Estudio de los aerosoles a partir de medidas de irradiancia solar espectral,” Ph.D. dissertation (Universidad de Valencia, Valencia, Spain, 1995).
  34. V. E. Cachorro, P. Utrillas, J. A. Martinez-Lozano, and A. M. de Frutos, “A preliminary assessment between a detailed two stream shortwave narrow-band model and spectral radiation measurements,” Sol. Energy 61, 265–273 (1997).
  35. D. R. Myers, “Estimates of uncertainty for measured spectra in the SERI spectral solar radiation database,” Sol. Energy 43, 347–352 (1989).
  36. V. E. Cachorro, P. Durán, and A. M. de Frutos, “Retrieval of vertical ozone using the Chappuis band with high spectral resolution solar radiation measurements,” Geophys. Res. Lett. 23, 3325–3328 (1996).
  37. R. Vergaz, “Turbiedad atmosférica y caracterización de los aerosoles mediante medidas espectroradiometricas,” M.Sc. thesis (Universidad de Vallodolid, Valladolid, Spain, 1996).
  38. V. E. Cachorro, P. Durán, A. M. de Frutos, P. Herreros, J. Bilbao, and A. de Miguel, “A year of atmospheric vertical radiative aerosol properties monitoring by high spectral solar radiation measurements,” in Proceedings of Eurotrac Symposium’96, P. M. Borrel, P. Borrel, T. Cvitas, and W. Seiler, eds. (Computational Mechanics, Southampton, UK, 1996) Vol. 1, pp. 257–260.
  39. R. E. Bird, R. L. Hulstrom, A. W. Kliman, and H. G. Eldering, “Solar spectral measurements in the terrestrial environment,” Appl. Opt. 21, 1430–1436 (1983).
  40. V. E. Cachorro, A. M. de Frutos, and J. L. Casanova, “Comparison between various models of solar spectral irradiance and experimental data,” Appl. Opt. 24, 3249–3253 (1985).
  41. V. E. Cachorro, A. M. de Frutos, and J. L. Casanova, “The influence of Ångström parameters on calculated direct solar spectral irradiances at high turbidity,” Sol. Energy 39, 399–407 (1987).
  42. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
  43. L. T. Molina and M. J. Molina, “Absolute absorption cross section of ozone in the 185-to-350-nm wavelength range,” J. Geophys. Res. 95, 14,501–14, 508 (1986).
  44. A. Amoruso, M. Cacciani, A. DiSarra, and G. Fiocco, “Absorption cross section of ozone in the 590 to 610 nm region at T = 299 K,” J. Geophys. Res. 95, 20,565–20, 568 (1990).
  45. W. Schneider, G. K. Moortgat, G. S. Tyndall, and J. P. Burrows, “Absorption cross-section of NO2 in the UV and visible (200–700 nm) at 298 K,” J. Photochem. Photobiol. A 40, 195–217 (1987).
  46. F. X. Kneizys, E. P. Shettle, L. W. Abreu, Jr., J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, and S. A. Clough, “Users Guide to Lowtran 7,” AFGL-TR-88–0177 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1988).
  47. J. H. Pierluisi, C. E. Maragoudakis, and R. Tehrani-Movahed, “New LOWTRAN band model for water vapor,” Appl. Opt. 28, 3792–3795 (1986).
  48. Current lowtran7 version, G. P. Anderson, Geophysics Directorate, Phillips Laboratory, 29 Randolph Road, Hanscom Air Force Base, Mass. 01731 (personal communication).
  49. S. A. Clouds, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–242 (1989).
  50. V. E. Cachorro, A. M. de Frutos, and J. L. Casanova, “Determination of the Ångström turbidity parameters,” Appl. Opt. 26, 3069–3076 (1985).
  51. V. E. Cachorro and A. De Frutos, “Retrieval of the atmospheric aerosol characteristics from visible extinction data at Valladolid (Spain),” Atmos. Environ. 28, 963–971 (1994).
  52. V. E. Cachorro and A. De Frutos, “A revised study of the validity of the general Junge relationship at solar wavelengths: application to vertical atmospheric aerosol layer studies,” Atmos. Res. 39, 113–126 (1995).
  53. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, “Optical properties of the atmosphere,” AFGCL-72–0497 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1972).
  54. A. Berk, L. S. Bernstein, and C. Robertson, “MODTRAN: a moderate resolution model LOWTRAN 7,” GL-TR-89–0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).
  55. J. Wang and G. P. Anderson, “Validation of FASCOD3 and MODTRAN3: comparison of model calculations with interferometer observations from SPECTRE and ITRA,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE 2309, 220–231 (1994).
  56. G. P. Anderson, J. Wang, M. L. Hoke, F. X. Kneizys, J. H. Chetwynd, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, and J. E. A. Selby, “History of one family of atmospheric radiative transfer codes,” in Passive Infrared Remote Sensing of Clouds and the Atmosphere II, D. K. Lynch, ed., Proc. SPIE 2309, 170–183 (1994).
  57. S. Bouffiès, D. Tanré, F. M. Bréon, and P. Dubuisson, “Atmospheric water vapor estimate by a differential absorption technique with the POLDER instrument,” in Atmospheric Sensing and Modeling II, R. P. Santer, ed., Proc. SPIE 2582, 131–143 (1995).
  58. U. Platt, “Differential optical absorption spectroscopy,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigris, ed. (Wiley, New York, 1994), pp. 27–86.
  59. B. Schmid, K. J. Thome, P. Demoulin, R. Peter, C. Mätzler, and J. Sekler, “Comparison of modeled and empirical approaches for retrieving columnar water vapor from solar transmittance measurements in the 0.94-μm region,” J. Geophys. Res. 101, 9345–9358 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited