OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 21 — Jul. 20, 1998
  • pp: 4712–4720

Parameterization of stratospheric aerosol physical properties on the basis of Nd:YAG lidar observations

Gian Paolo Gobbi  »View Author Affiliations

Applied Optics, Vol. 37, Issue 21, pp. 4712-4720 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An extension to the 355- and 1064-nm wavelengths of a numerical optical model originally developed at 532 nm is presented. The resulting parameterization allows estimates of stratospheric aerosol surface area, volume, and extinction-to-backscatter ratio from lidar measurements obtained at one of the two Nd:YAG laser wavelengths. Functional relationships that link single-wavelength backscatter to each of the physical variables are provided for sulfate aerosol types ranging from background to heavy volcanic under environmental conditions representative of the global lower stratosphere. The behavior of the functional relationships at the three Nd:YAG wavelengths is compared. Relative errors of model estimates range between 10% and 50%, depending on wavelength and backscatter cross sections. These values are comparable with the ones that characterize in situ particle counters. The inference of particle effective radius and the application of the method to the interpretation of supercooled polar stratospheric cloud observations are discussed.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(140.3530) Lasers and laser optics : Lasers, neodymium
(280.3640) Remote sensing and sensors : Lidar

Original Manuscript: September 2, 1997
Revised Manuscript: March 2, 1998
Published: July 20, 1998

Gian Paolo Gobbi, "Parameterization of stratospheric aerosol physical properties on the basis of Nd:YAG lidar observations," Appl. Opt. 37, 4712-4720 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Hansen, M. Sato, A. Lacis, R. Ruedy, “The missing climate forcing,” Philos. Trans. R. Soc. London B 352, 231–240 (1997). [CrossRef]
  2. World Meteorological Organization, “Scientific Assessment of Ozone Depletion,” WMO Report No. 37 (World Meteorological Organization, Geneva, 1995).
  3. D. V. Michelangeli, M. Allen, Y. L. Yung, “El Chichon volcanic aerosol: impact of radiative, thermal, and chemical perturbations,” J. Geophys. Res. 94, 18,429–18,443 (1989). [CrossRef]
  4. R. P. Turco, R. C. Whitten, O. B. Toon, “Stratospheric aerosol: observation and theory,” Rev. Geophys. 20, 233–279 (1982). [CrossRef]
  5. A. M. Middlebrook, L. T. Iraci, L. S. McNeill, B. G. Koehler, O. W. Saastad, M. A. Tolbert, D. R. Hanson, “FTIR studies of thin film H2SO4/H2O films: formation, water uptake, and solid–liquid phase changes,” J. Geophys. Res. 98, 20,473–20,481 (1993). [CrossRef]
  6. T. Koop, K. S. Carslaw, “Melting of H2SO4-H2O particles upon cooling: implications for polar stratospheric clouds,” Science 272, 1638–1641 (1996). [CrossRef] [PubMed]
  7. H. M. Steele, P. Hamill, “Effects of temperature and humidity on the growth and optical properties of sulfuric acid–water droplets in the stratosphere,” J. Aerosol Sci. 12, 517–528 (1981). [CrossRef]
  8. G. K. Yue, L. R. Poole, P. H. Wang, E. W. Chiou, “Stratospheric aerosol acidity, density and refractive index deduced from SAGE II and NMC temperature data,” J. Geophys. Res. 99, 3727–3738 (1994). [CrossRef]
  9. P. B. Russell, J. M. Livingston, R. F. Pueschel, J. J. Bauman, J. B. Pollack, S. L. Brooks, P. Hamill, L. W. Thomason, L. L. Stowe, T. Deshler, E. G. Dutton, R. W. Bergstrom, “Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses,” J. Geophys. Res. 101, 18745–18763 (1996). [CrossRef]
  10. M. J. Molina, R. Zhang, P. J. Wooldridge, J. R. McMahon, J. E. Kim, H. Y. Chang, K. D. Beyer, “Physical chemistry of the H2SO4/HNO3/H2O system: implications for polar stratospheric clouds,” Science 261, 1418–1423 (1993). [CrossRef] [PubMed]
  11. G. P. Gobbi, “Lidar estimation of stratospheric aerosol properties: surface, volume and extinction to backscatter ratio,” J. Geophys. Res. 100, 11219–11235 (1995). [CrossRef]
  12. R. T. H. Collis, P. B. Russell, “Lidar measurement of particle and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, New York, 1976), pp. 71–145. [CrossRef]
  13. D. M. Winker, M. T. Osborn, “Airborne lidar observations of the Pinatubo volcanic plume,” Geophys. Res. Lett. 19, 167–170 (1992). [CrossRef]
  14. G. P. Gobbi, F. Congeduti, A. Adriani, “Early stratospheric effects of the Pinatubo eruption,” Geophys. Res. Lett. 19, 997–1000 (1992). [CrossRef]
  15. G. P. Gobbi, G. Di Donfrancesco, A. Adriani, “Physical properties of stratospheric clouds during the Antarctic winter of 1995,” J. Geophys. Res. (to be published). [PubMed]
  16. P. B. Russell, T. J. Swissler, M. P. McCormick, W. P. Chu, J. M. Livingson, T. J. Pepin, “Satellite and correlative measurements of the stratospheric aerosol. I. An optical model for data conversion,” J. Atmos. Sci. 38, 1279–1294 (1981). [CrossRef]
  17. T. Deshler, B. J. Johnson, W. R. Rozier, “Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41N: vertical profiles, size distribution, and volatility,” Geophys. Res. Lett. 20, 1435–1438 (1993). [CrossRef]
  18. R. G. Pinnick, J. M. Rosen, D. J. Hofmann, “Stratospheric aerosol measurements. III. Optical model calculations,” J. Atmos. Sci. 33, 304–313 (1976). [CrossRef]
  19. D. J. Hofmann, J. M. Rosen, “Stratospheric sulfuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chichon,” Geophys. Res. Lett. 10, 313–316 (1983). [CrossRef]
  20. K. G. Snetsinger, G. V. Ferry, P. B. Russell, R. F. Pueschel, V. R. Oberbeck, “Effects of the El Chichon on stratospheric aerosol, late 1982 to early 1984,” J. Geophys. Res. 92, 761–771 (1987). [CrossRef]
  21. H. Jäger, D. J. Hofmann, “Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ aerosol measurements from 1980 to 1987,” Appl. Opt. 30, 127–138 (1991). [CrossRef] [PubMed]
  22. L. R. Poole, NASA Langley Research Center, Hampton, Va. 23681 (personal communication, 1998).
  23. D. J. Hofmann, J. M. Rosen, J. W. Harder, J. V. Hereford, “Balloon-borne measurements of aerosol, condensation nuclei, and cloud particles in the stratosphere at McMurdo Station, Antarctica, during the spring of 1987,” J. Geophys. Res. 94, 11253–11269 (1989). [CrossRef]
  24. A. Ansmann, U. Wandinger, C. Weitkamp, “One-year observations of Mount-Pinatubo aerosol with an advanced raman lidar over Germany at 53.5N,” Geophys. Res. Lett. 20, 711–714 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited