OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 21 — Jul. 20, 1998
  • pp: 4721–4731

Global Tropospheric and Total Ozone Monitoring with a Double-Etalon Fabry-Perot Interferometer. I. Instrument Concept

Allen M. Larar, Paul B. Hays, and S. Roland Drayson  »View Author Affiliations

Applied Optics, Vol. 37, Issue 21, pp. 4721-4731 (1998)

View Full Text Article

Acrobat PDF (444 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The global distribution of tropospheric ozone (O3) can be observed from a satellite-based instrument by spectrally isolating the pressure-broadened wings of strong O3 lines. The Fabry–Perot interferometer (FPI) provides high spectral resolution and high-throughput capabilities that are essential for performing such a measurement. Through proper selection of channel spectral regions, the FPI optimized for tropospheric O3 measurements can simultaneously observe a stratospheric component and thus the total O3 column abundance. We present a conceptual instrument design that involves a double-etalon fixed-gap series configuration FPI along with an ultranarrow bandpass filter to achieve single-order operation with an overall spectral resolution of approximately 0.068 cm−1, sampling the narrow 1054.2–1055.2 cm−1 spectral region within the strong 9.6-μm ozone infrared band from a nadir-viewing satellite configuration.

© 1998 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.4950) Atmospheric and oceanic optics : Ozone
(010.7030) Atmospheric and oceanic optics : Troposphere
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(280.1120) Remote sensing and sensors : Air pollution monitoring

Allen M. Larar, Paul B. Hays, and S. Roland Drayson, "Global Tropospheric and Total Ozone Monitoring with a Double-Etalon Fabry-Perot Interferometer. I. Instrument Concept," Appl. Opt. 37, 4721-4731 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. L. Chameides, P. S. Kasibhatla, J. Yienger, and H. Levy, “Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production,” Science 264, 74–77 (1994).
  2. W. E. Hogsett, J. E. Weber, D. Tingey, A. Herstrom, E. H. Lee, and J. A. Laurence, “Environmental auditing: an approach for characterizing tropospheric ozone risk to forests,” Environ. Manage. 21, 105–120 (1997).
  3. A. S. Lefohn, W. Jackson, D. S. Shadwick, and H. P. Knudsen, “Effect of surface ozone exposures on vegetation grown in the southern Appalachian mountains: identification of possible areas of concern,” Atmos. Environ. 31, 1695–1708 (1997).
  4. A. Volz and D. Kley, “Evaluation of the Montsouris series of ozone measurements made in the nineteenth century,” Nature (London) 332, 240–242 (1988).
  5. J. Fishman, C. E. Watson, J. C. Larsen, and J. A. Logan, “Distribution of tropospheric ozone determined from satellite data,” J. Geophys. Res. 95, 3599–3617 (1990).
  6. J. Fishman, J. M. Hoell, R. D. Bendura, R. J. McNeal, and V. W. J. H. Kirchhoff, “NASA GTE TRACE A experiment (September-October 1992): overview,” J. Geophys. Res. 101, 23865–23879 (1996).
  7. W. B. Grant, ed., Ozone Measuring Instruments for the Stratosphere, Vol. 1 of OSA Collected Works in Optics Series (Optical Society of America, Washington, D.C., 1989).
  8. A. M. Larar, “The feasibility of tropospheric and total ozone determination using a Fabry-Perot interferometer as a satellite-based nadir-viewing atmospheric sensor,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 1993).
  9. A. R. Bens, L. L. Cogger, and G. G. Shepherd, “Upper atmospheric temperatures from Doppler line widths—III,” Planet. Space Sci. 13, 551–563 (1965).
  10. T. D. Cocks, D. F. Creighton, and F. Jacka, “Application of a dual Fabry-Perot spectrometer for daytime airglow studies,” J. Atmos. Terr. Phys. 42, 499–511 (1980).
  11. J. E. Blamont and J. M. Luton, “Geomagnetic effect on the neutral temperature of the F region during the magnetic storm of September 1969,” J. Geophys. Res. 77, 3534–3556 (1972).
  12. P. B. Hays, T. L. Killeen, and B. C. Kennedy, “The Fabry-Perot interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395–416 (1981).
  13. P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, “The High-Resolution Doppler Imager on the Upper Atmosphere Research Satellite,” J. Geophys. Res. 98, 10713–10723 (1993).
  14. A. E. Roche and J. B. Kumer, “Cryogenic limb array etalon spectrometer (CLAES): experiment overview,” in Cryogenic Optical Systems and Instruments III, R. K. Melugin and W. G. Pierce, eds., Proc. SPIE 973, 324–334 (1989).
  15. J. T. Houghton, “The meteorological significance of remote measurements of infra-red emission from atmospheric carbon dioxide,” Q. J. R. Meteorol. Soc. 87, 102–104 (1961).
  16. J. Wang, “An investigation on the multiorder Fabry-Perot interferometer as a satellite-borne high resolution atmospheric sounder,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 1990).
  17. W. R. Skinner, P. B. Hays, and V. J. Abreu, “Optimization of a triple etalon interferometer,” Appl. Opt. 26, 2817–2827 (1987).
  18. G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, New York, 1986).
  19. J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Institute of Physics, London, 1989).
  20. G. Hernandez, “Analytical description of a Fabry-Perot photoelectric spectrometer,” Appl. Opt. 5, 1745–1748 (1966).
  21. F. Roesler, “Fabry-Perot instruments for astronomy,” in Methods of Experimental Physics, N. Carleton, ed. (Academic, New York, 1974) Part A, Vol. 12, pp. 531–568.
  22. A. M. Larar and S. R. Drayson, “Global tropospheric and total ozone monitoring with a double-etalon Fabry–Perot interferometer. II. Feasibility analysis,” Appl. Opt. 37, 4732–4743 (1998).
  23. P. B. Hays, “Circle to line interferometer optical system,” Appl. Opt. 29, 1482–1489 (1990); “Circle-to-line interferometer optical system,” U.S. patent 4,893,003 (9 January 1990).
  24. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 5th ed. (Pergamon, Oxford, U.K., 1975).
  25. J. E. Mack, D. P. McNutt, F. L. Roesler, and R. Chabbal, “The PEPSIOS purely interferometric high-resolution scanning spectrometer. I. The pilot model,” Appl. Opt. 2, 873–884 (1963).
  26. J. G. Hirschberg and P. Platz, “A multichannel Fabry-Perot interferometer,” Appl. Opt. 4, 1375–1381 (1965).
  27. D. Rees, I. McWhirter, P. B. Hays, and T. Dines, “A stable, rugged, capacitance-stabilized piezoelectric scanned Fabry-Perot etalon,” J. Phys. E 14, 1320–1328 (1981).
  28. T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, and D. H. Ceckowski, “Image plane detector for the Dynamics Explorer Fabry-Perot interferometer,” Appl. Opt. 22, 3503–3513 (1983).
  29. V. J. Abreu and W. R. Skinner, “Inversion of Fabry-Perot CCD images: use in Doppler shift measurements,” Appl. Opt. 28, 3382–3386 (1989).
  30. P. B. Hays and J. Wang, “Image plane detector for Fabry-Perot interferometers: physical model and improvement with anticoincidence detection,” Appl. Opt. 30, 3100–3107 (1991).
  31. S. R. Drayson, “Atmospheric transmission in the CO2 bands between 12μ and 18μ,” Appl. Opt. 5, 385–391 (1966).
  32. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, and M. A. H. Smith, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992).
  33. W. Zhao, “Thermal infrared radiation transfer in the planetary boundary layer,” Ph.D. dissertation (University of Michigan, Ann Arbor, Michigan, 1992).
  34. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120-km),” Tech. Rep. AFGL-TR-86–0110 (Philips Laboratory, Hanscom Air Force Base, Mass., 1986).
  35. The mention of vendor names in this paper is for information purposes only and does not constitute an endorsement of these products by the authors or their institutions.
  36. F. L. Roesler, “Effects of plate defects in a polyetalon Fabry-Perot spectrometer,” Appl. Opt. 8, 829–831 (1969).
  37. W. W. Gregg, P. E. Ardanuy, W. C. Braun, and B. J. Vallette, “Analysis of Error in TOMS Total Ozone as a Function of Orbit and Attitude Parameters,” NASA Contractor Rep. 4361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited