OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 21 — Jul. 20, 1998
  • pp: 4758–4764

Self-aligning lidar for the continuous monitoring of the atmosphere

Luca Fiorani, Mario Armenante, Roberta Capobianco, Nicola Spinelli, and Xuan Wang  »View Author Affiliations

Applied Optics, Vol. 37, Issue 21, pp. 4758-4764 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (333 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In a lidar system an accurate transmitter–receiver alignment is essential for correct results. Usually this optical adjustment is time consuming and requires the intervention of highly qualified personnel. As a solution to this problem, a fast and precise automatic alignment procedure is presented, based on a simple model of the transmitter–receiver overlap. The lidar mounted at the Naples University is used to test this method. A centering precision of few microradians is obtained through dedicated software controlling a gimbal-mounted mirror. The automatic alignment procedure is then assessed. In particular, the correctness of the center and of its error is determined. Finally, the system is applied to the monitoring of tropospheric aerosols, leading to the continuous retrieval of profiles with fine spatiotemporal resolution.

© 1998 Optical Society of America

OCIS Codes
(220.4880) Optical design and fabrication : Optomechanics
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar

Original Manuscript: October 30, 1997
Revised Manuscript: March 12, 1998
Published: July 20, 1998

Luca Fiorani, Mario Armenante, Roberta Capobianco, Nicola Spinelli, and Xuan Wang, "Self-aligning lidar for the continuous monitoring of the atmosphere," Appl. Opt. 37, 4758-4764 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Finlayson-Pitts, J. N. Pitts, Atmospheric Chemistry (Wiley, New York, 1986).
  2. R. A. Pielke, Mesoscale Meteorological Modeling (Academic, Orlando, Fla., 1984).
  3. A. C. Stern, ed., Air Pollution—Volume III: Measuring, Monitoring and Surveillance of Air Pollution (Academic, New York, 1977).
  4. G. Fiocco, L. D. Smullin, “Detection of scattering layers in the upper atmosphere by optical radar,” Nature (London) 199, 1275–1276 (1963). [CrossRef]
  5. E. D. Hinkley, ed., Laser Monitoring of the Atmosphere (Springer-Verlag, Berlin, Germany, 1976). [CrossRef]
  6. R. M. Measures, Laser Remote Sensing (Krieger, Malabar, Fla., 1992).
  7. W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, New York, 1995), pp. 213–305.
  8. L. Fiorani, B. Calpini, L. Jaquet, H. Van den Bergh, E. Durieux, “A combined determination of wind velocities and ozone concentrations for a first measurement of ozone fluxes with a DIAL instrument during the MEDCAPHOT-TRACE campaign,” Atmos. Environ. 32, 2151–2159 (1998). [CrossRef]
  9. M. Beekmann, G. Ancellet, G. Mégie, H. G. J. Smit, D. Kley, “Intercomparison campaign of vertical ozone profiles including electrochemical sondes of ECC and Brewer–Mast type and ground based UV-differential absorption lidar,” J. Atmos. Chem. 19, 259–288 (1994). [CrossRef]
  10. U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994). [CrossRef]
  11. V. Cuomo, P. Di Girolamo, F. Esposito, G. Pappalardo, C. Serio, N. Spinelli, M. Armenante, B. Bartoli, V. Berardi, R. Bruzzese, C. Bellecci, G. E. Caputi, F. De Donato, P. Gaudio, M. Valentini, H. Melfi, M. P. McCormick“The LITE correlative measurements campaign in southern Italy: preliminary results,” Appl. Phys. B 64, 553–560 (1997). [CrossRef]
  12. E. Durieux, L. Fiorani, B. Calpini, M. Flamm, L. Jaquet, H. Van den Bergh, “Tropospheric ozone measurements over the Great Athens Area during the MEDCAPHOT-TRACE campaign with a new shot-per-shot DIAL instrument. Experimental system and results,” Atmos. Environ. 32, 2141–2150 (1998). [CrossRef]
  13. I. S. McDermid, D. A. Haner, M. M. Kleiman, T. D. Walsh, M. L. White, “Differential absorption lidar systems for tropospheric and stratospheric ozone measurements,” Opt. Eng. 30, 22–30 (1991). [CrossRef]
  14. D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-Space Technology Experiment,” Proc. IEEE 84, 164–180 (1996). [CrossRef]
  15. L. Fiorani, B. Calpini, L. Jaquet, H. Van den Bergh, E. Durieux, “Correction scheme for experimental biases in differential absorption lidar tropospheric ozone measurements based on the analysis of shot per shot data samples,” Appl. Opt. 36, 6857–6863 (1997). [CrossRef]
  16. S. A. Young, “Lidar system optical alignment and its verification,” Appl. Opt. 26, 1612–1616 (1987). [CrossRef] [PubMed]
  17. P. Ambrico, A. Amodeo, S. Amoruso, M. Armenante, V. Berardi, A. Boselli, R. Bruzzese, P. Di Girolamo, L. Fiorani, G. Pappalardo, N. Spinelli, R. Velotta, “A multiparametric lidar system in the mid IR,” Laser Optoelektron. 29(5), 62–69 (1997).
  18. E. Mészáros, Atmospheric Chemistry (Elsevier, Amsterdam, 1981).
  19. A. Papayannis, A. Bais, D. Balis, H. van den Bergh, B. Calpini, E. Durieux, L. Fiorani, L. Jaquet, I. Ziomas, C. S. Zerefos, “The role of urban and suburban aerosols on solar UV radiation over Athens, Greece,” Atmos. Environ. 32, 2193–2201 (1998). [CrossRef]
  20. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef] [PubMed]
  21. L. Elterman, UV, Visible, and IR Attenuation for Altitudes to 50 km, 1968 (Air Force Cambridge Research Laboratories, Bedford, Mass.1968).
  22. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  23. R. B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer, Dordrecht, The Netherlands, 1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited