OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 21 — Jul. 20, 1998
  • pp: 4810–4818

Development of a System for Studying the Morphology and Dynamics of Agglomerated Flame Particulates by use of Dynamic Light Scattering

Glenn Waguespack and Tryfon T. Charalampopoulos  »View Author Affiliations


Applied Optics, Vol. 37, Issue 21, pp. 4810-4818 (1998)
http://dx.doi.org/10.1364/AO.37.004810


View Full Text Article

Acrobat PDF (220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An experimental system for the study of the morphological and dynamic properties of flame-generated agglomerates by use of both polarized (vertical–vertical polarization orientation) and depolarized (vertical–horizontal polarization orientation) dynamic light scattering (DLS) was developed and tested. The system consists of a flame reactor for generating chainlike agglomerates of Fe2O3 in an Fe(CO)5-seeded CO–O2 diffusion flame and a light-scattering spectrometer for performing polarized and depolarized DLS measurements of the agglomerates’ dynamic properties. It is demonstrated for the first time that one can successfully obtain depolarized DLS correlation functions from a flame environment by combining the results of a series of measurements obtained using a cross-correlation detection system.

© 1998 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(280.2470) Remote sensing and sensors : Flames
(290.0290) Scattering : Scattering

Citation
Glenn Waguespack and Tryfon T. Charalampopoulos, "Development of a System for Studying the Morphology and Dynamics of Agglomerated Flame Particulates by use of Dynamic Light Scattering," Appl. Opt. 37, 4810-4818 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-21-4810


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. T. Charalampopoulos, “Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques,” Prog. Energy Combust. Sci. 18, 13–45 (1992).
  2. G. Waguespack, “Studies of the morphology and dynamics of flame-generated agglomerates using dynamic light scattering,” Ph.D. dissertation (Louisiana State University, Baton Rouge, Louisiana, 1997).
  3. A. T. Forrester, “Photoelectric mixing as a spectroscopic tool,” J. Opt. Soc. Am. 51, 253–259 (1961).
  4. R. Pecora, “Doppler shifts in light scattering from pure liquids and polymer solutions,” J. Chem. Phys. 40, 1604–1614 (1964).
  5. R. Pecora, “Spectral distribution of light scattered by monodisperse rigid rods,” J. Chem. Phys. 48, 4126–4128 (1968).
  6. G. B. Benedek, “Optical mixing spectroscopy, with applications to problems in physics, chemistry, biology, and engineering,” in Polarization, Matter, and Radiation (Press Universitaires de France, Paris, 1969), pp. 49–84.
  7. E. Jakeman, “Theory of optical spectroscopy by digital autocorrelation of photon-counting fluctuations,” J. Phys. A Gen. Phys. 3, 201–215 (1970).
  8. H. Z. Cummins and H. L. Swinney, “Light beating spectroscopy,” Prog. Opt. 75, 133–200 (1970).
  9. W. Hinds and P. C. Reist, “Aerosol measurement by laser doppler spectroscopy.—I. Theory and experimental results for aerosols homogeneous,” Aerosol Sci. 3, 501–514 (1972).
  10. S. S. Penner, J. M. Bernard, and T. Jerskey, “Power spectra observed in laser scattering from moving, polydisperse particle systems in flames.—I. Theory,” Acta Astron. 3, 69–91 (1976).
  11. S. S. Penner, J. M. Bernard, and T. Jerskey, “Light scattering from moving, polydisperse particles in flames—II. Preliminary experiments,” Acta Astron. 3, 93–105 (1976).
  12. J. F. Driscoll and D. M. Mann, “Submicron particle size measurements in an acetylene–oxygen flame,” Combust. Sci. Technol. 20, 41–47 (1979).
  13. L. L. Penner and P. H. P. Chang, “Particle sizing in flames,” in Combustion in Reactive Systems, Vol. 76 of Progress in Astronautics and Aeronautics, J. R. Bowen, A. K. Openheim, and R. I. Soloukin, eds. (American Institute of Aeronautics and Astronautics, New York, 1981), pp. 1–30.
  14. G. B. King, C. M. Sorensen, T. W. Lester, and J. F. Merklin, “Photon correlation spectroscopy used as a particle size diagnostic in sooting flames,” Appl. Opt. 21, 976–978 (1982).
  15. G. B. King, C. M. Sorensen, T. W. Lester, and J. F. Merklin, “Direct measurements of aerosol diffusion constants in the intermediate Knudsen regime,” Phys. Rev. Lett. 50, 1125–1128 (1983).
  16. W. L. Flower, “Optical measurements of soot formation in premixed flames,” Combust. Sci. Technol. 33, 17–33 (1983).
  17. S. M. Scrivner, T. W. Taylor, C. M. Sorensen, and J. F. Merklin, “Soot particle size distribution measurements in a premixed flame using photon correlation spectroscopy,” Appl. Opt. 25, 291–297 (1986).
  18. T. T. Charalampopoulos, “An automated light scattering system and a method for the in situ measurement of the index of refraction of soot particles,” Rev. Sci. Instrum. 58, 1638–1646 (1987).
  19. T. T. Charalampopoulos and H. Chang, “In situ optical properties of soot particles in the wavelength range from 340 nm to 600 nm,” Combust. Sci. Technol. 59, 401–421 (1988).
  20. K. Ueyama, T. Ono, M. Matsukata, and R. Osima, “Application of dynamic light scattering based on a monodisperse model as an in-situ method of measuring ultra-fine particles growing and aggregating in a flame,” J. Chem. Eng. Jpn. 26, 686–691 (1993).
  21. J. Cai and C. M. Sorensen, “Diffusion of fractal aggregates in the free molecular regime,” Phys. Rev. E 50, 3397–3400 (1994).
  22. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Wiley, New York, 1976).
  23. A. Wada, N. Suda, T. Tsuda, and K. Soda, “Rotary-diffusion broadening of Rayleigh lines scattered from optically anisotropic macromolecules in solution,” J. Chem. Phys. 50, 31–35 (1969).
  24. A. Wada, K. Soda, T. Tanaka, and N. Suda, “Depolarized light mixing for light beating spectroscopy,” Rev. Sci. Instrum. 41, 845–853 (1970).
  25. J. M. Schurr and K. S. Schmitz, “Rotational relaxation of macromolecules determined by dynamic light scattering. I. Tobacco mosaic virus,” Biopolym. 12, 1021–1045 (1973).
  26. J. M. Schurr and K. S. Schmitz, “Rotational relaxation of macromolecules determined by dynamic light scattering. II. Temperature dependence for DNA,” Biopolym. 12, 1543–1564 (1973).
  27. P. S. Russo, M. J. Saunders, and L. M. DeLong, “Zero-angle depolarized light scattering of a colloidal polymer,” Anal. Chim. Acta. 189, 69–87 (1986).
  28. C. R. Crosby, N. C. Ford, Jr., F. E. Karasz, and K. H. Langley, “Depolarized dynamic light scattering of a rigid macromolecule poly(p-phenylene benzbisthiazole),” J. Chem. Phys. 75, 4298–4306 (1981).
  29. L. M. DeLong and P. S. Russo, “Particle size distribution by zero-angle depolarized light scattering,” in Polymer Characterization: Physical Property, Spectroscopic, and Chromatographic Methods, C. D. Carver and T. Provder, eds. (American Chemical Society, Washington, D.C., 1990).
  30. T. A. King and J. D. G. McAdam, “Translational and rotational diffusion of tobacco mosaic virus from polarized and depolarized light scattering,” Biopolym. 12, 1917–1926 (1973).
  31. S. Michielsen and R. Pecora, “Solution dimensions of the gramicidin dimer by dynamic light scattering,” Biochemistry 20, 6994–6997 (1981).
  32. K. M. Zero and R. Pecora, “Rotational and translational diffusion in semidilute solutions of rigid-rod macromolecules,” Macromolecules 15, 87–93 (1982).
  33. B. E. Dahneke, “Slip correction factors for nonspherical bodies—III. The form of the general law,” J. Aerosol Sci. 4, 163–170 (1973).
  34. N. C. Ford, Jr., “Light scattering apparatus,” in Dynamic Light Scattering—Applications of Photon Correlation Spectroscopy, R. Pecora, ed. (Plenum, New York, 1985).
  35. P. F. Perrin, “Mouvement brownien d’un ellipsoide (I). Dispersion dielectrique pour des molecules ellipsoidales,” J. Phys. Rad. 5, 497–511 (1934).
  36. P. F. Perrin, “Mouvement brownien d’un ellipsoide (II). Rotation libre et depolarisation des fluorescences translation et diffusion de molecules ellipsoidales,” J. Phys. Rad. 7, 1–11 (1936).
  37. B. E. Dahneke, “Slip correction factors for nonspherical bodies—I. Introduction and continuum flow,” J. Aerosol Sci. 4, 139–145 (1973).
  38. B. E. Dahneke, “Slip correction factors for nonspherical bodies—II. Free molecule flow,” J. Aerosol Sci. 4, 147–161 (1973).
  39. G. Kasper, S.-N. Shon, and D. T. Shaw, “Controlled formation of chain aggregates from very small metal oxide particles,” Am. Ind. Hyg. Assoc. J. 41, 288–296 (1980).
  40. Z. Zhang and T. T. Charalampopoulos, “Controlled combustion synthesis of nano-sized iron oxide aggregates,” in Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 1851–1858.
  41. Instruction Manual for Model BI-9000AT Digital Correlator (Brookhaven Instruments Corporation, Holtsville, N.Y., 1993).
  42. L. Mandel, “Fluctuations of photon beams: the distribution of the photo-electrons,” Proc. Phys. Soc. London 74, 233–243 (1959).
  43. A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, “Photoelectric mixing of incoherent light,” Phys. Rev. 99, 1691–1700 (1955).
  44. E. Jakeman, E. J. Oliver, and E. R. Pike, “The effects of spatial coherence on intensity fluctuation distributions of Gaussian light,” J. Phys. A 3, L45–L48 (1970).
  45. E. Jakeman, E. R. Pike, and S. Swain, “Statistical accuracy in the digital autocorrelation of photon counting fluctuations,” J. Phys. A Gen. Phys. 4, 517–534 (1971).
  46. K. Schätzel, R. Kalström, B. Stampa, and J. Ahrens, “Correction of detection-system dead-time effects on photon-correlation functions,” J. Opt. Soc. Am. B 6, 937–947 (1989).
  47. H. C. Burstyn, R. F. Chang, and J. V. Sengers, “Nonexponential decay of critical concentration fluctuations in a binary liquid,” Phys. Rev. Lett. 44, 410–413 (1980).
  48. G. D. J. Phillies, “Utility of multidetector methods in quasi-elastic light-scattering spectroscopy,” in Measurement of Suspended Particles by Quasi-Elastic Light Scattering, B. E. Dahneke, ed. (Wiley, New York, 1985), pp. 291–326.
  49. Photomultipliers (Thorn EMI Electron Tubes, Ltd., Rockway, N.J., 1986).
  50. P. S. Russo, Louisiana State University, Baton Rouge, La. 70803 (personal communication, 1996).
  51. S. W. Provencher, “A constrained regularization method for inverting data represented by linear algebraic or integral equations,” Comput. Phys. Commun. 27, 213–227 (1982).
  52. S. W. Provencher, “contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations,” Comput. Phys. Commun. 27, 229–242 (1982).
  53. D. E. Koppel, “Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants,” J. Chem. Phys. 57, 4814–4820 (1972).
  54. S. W. Provencher, “contin (version 2) user’s manual,” EMBL Rep. No. DA07 (European Molecular Biology Laboratory, Göttingen, Germany, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited