OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 21 — Jul. 20, 1998
  • pp: 4819–4822

Throughput of Tilted Interferometers

Jérôme Genest, Pierre Tremblay, and André Villemaire  »View Author Affiliations


Applied Optics, Vol. 37, Issue 21, pp. 4819-4822 (1998)
http://dx.doi.org/10.1364/AO.37.004819


View Full Text Article

Acrobat PDF (151 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The throughput of a tilted Fourier-transform spectrometer (FTS) with collimation is calculated. It is shown that the maximum off-axis angle that is acceptable in the interferometer is inversely proportional to the distance between the detector and the location where the tilt is applied to the wave fronts and is also inversely proportional to the tilt angle. This effect leads to tilt sensitivity in a scanning FTS and to the loss of the throughput advantage in a FTS with no moving part in which a tilt between two collimated beams is used to disperse the interferogram spatially. Experimental verification confirms the throughput condition with tilt angle.

© 1998 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(230.6120) Optical devices : Spatial light modulators

Citation
Jérôme Genest, Pierre Tremblay, and André Villemaire, "Throughput of Tilted Interferometers," Appl. Opt. 37, 4819-4822 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-21-4819


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. Okamoto, S. Kawata, and S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23, 269–273 (1984).
  2. H. Aryamanya-Mugisha and R. Williams, “A Fourier transform diode array spectrometer for the UV, visible and near-IR,” Appl. Spectrosc. 39, 693–697 (1985).
  3. R. F. Horton, “Optical design for a high étendue imaging Fourier transform spectrometer,” in Imaging Spectrometry II, M. R. Descour and J. M. Mooney, eds., Proc. SPIE 2819, 300–315 (1996).
  4. E. R. Peck, “Integrated flux from a Michelson or corner-cube interferometer,” J. Opt. Soc. Am. 45, 931–934 (1955).
  5. J. Connes, “Recherches sur la spectroscopie par la transformation de Fourier,” Rev. Opt. Theor. Exper. 40, 41–79, 116–140, 171–190, 231–265 (1961).
  6. J. W. Brault, “Fourier transform spectrometry,” in High Resolution in Astronomy, A. O. Benz, M. C. E. Huber, and M. Mayor, eds., Proceedings of the 15th Advanced Course of the Swiss Society of Astronomy and Astrophysics (Swiss Society of Astronomy and Astrophysics, Saas-Fee, Switzerland, 1985), pp. 1–61.
  7. P. G. Lucey, K. Horton, T. Williams, K. Hinck, and C. Budney, “SMIFTS: a cryogenically-cooled spatially-modulated imaging infrared interferometer spectrometer,” in Imaging Spectrometry of the Terrestial Environment, G. Vane, ed., Proc. SPIE 1937, 130–141 (1993).
  8. A. D. Meigs, E. W. Butler, B. A. Jones, L. J. Otten III, R. G. Sellar, and J. B. Rafert, “Airborne visible hyperspectral imaging spectrometer: optical and system level description,” in Imaging Spectrometry II, M. R. Descour and J. M. Mooney, eds., Proc. SPIE 2819, 278–284 (1996).
  9. L. J. I. Otten, R. G. Sellar, and J. R. Bruce, “Measured performance of an airborne Fourier transform hyperspectral imager,” in Imaging Spectrometry II, M. R. Descour and J. M. Mooney, eds., Proc. SPIE 2819, 291–299 (1996).
  10. J. B. Rafert, R. Sellar, and J. H. Blatt, “Monolithic Fourier-transform imaging spectrometer,” Appl. Opt. 34, 7228–7230 (1995).
  11. G. W. Stroke and A. T. Funkhouser, “Fourier-transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965).
  12. A. Girard, “Devices for multiplex stellar spectroscopy,” in Proceedings of the Aspen International Conference on Fourier Transform Spectroscopy (ICOFTS 1), G. A. Vanasse, A. T. Stais, and D. J. Barker, eds., AFCRL-0019–71 (Air Force Cambridge Research Laboratory, Bedford, Mass., 1971), pp. 425–428.
  13. M.-L. Junttila, “Stationary Fourier-transform spectrometer,” Appl. Opt. 31, 4106–4112 (1992).
  14. K. Möller, “Wave-front-dividing array interferometers without moving parts for real-time spectroscopy from the IR to the UV,” Appl. Opt. 34, 1493–1501 (1995).
  15. M.-L. Junttila, J. Kauppinen, and E. Ikonen, “Performance limits of stationary Fourier spectrometers,” J. Opt. Soc. Am. A 8, 1457–1462 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited