OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 21 — Jul. 20, 1998
  • pp: 4914–4920

Spectroscopy and laser characteristics of copper-vapor-laser pumped Pyrromethene-556 and Pyrromethene-567 dye solutions

Yossi Assor, Zeev Burshtein, and Salman Rosenwaks  »View Author Affiliations

Applied Optics, Vol. 37, Issue 21, pp. 4914-4920 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (204 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We measured the basic optical properties of Pyrromethene-567 (P567) and Pyrromethene-556 (P556) dye solutions that are relevant to their application as dye lasers. The fluorescence spectra of methanol solutions show mirror images in relation to the absorption spectra, with Stokes shifts of 29.5 and 37.5 nm, respectively, for the two dyes. The central fluorescence peaks were at 546 and 535 nm, with widths of ∼40 and ∼50 nm (FWHM). The quantum yields were 97% ± 5% and 78% ± 5% for P567 and P556, respectively. Fluorescence lifetimes of 6.0 ± 0.2 ns were obtained for both dyes in methanol. Laser action, obtained by pumping with the green emission line (510.6 nm) from a copper-vapor laser, was measured in a Hänsch-type cavity. Tunability ranged from 531 to 590 nm for P567 and from 522 to 590 nm for P556. Lasing thresholds were ∼0.27 and ∼0.16 mJ/pulse, with 25% and 27% slope efficiencies for P567 and P556, respectively. Spectroscopy and lasing were studied in other solvents as well.

© 1998 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.2050) Lasers and laser optics : Dye lasers
(260.2510) Physical optics : Fluorescence
(300.1030) Spectroscopy : Absorption
(300.2140) Spectroscopy : Emission

Original Manuscript: December 5, 1997
Revised Manuscript: April 3, 1998
Published: July 20, 1998

Yossi Assor, Zeev Burshtein, and Salman Rosenwaks, "Spectroscopy and laser characteristics of copper-vapor-laser pumped Pyrromethene-556 and Pyrromethene-567 dye solutions," Appl. Opt. 37, 4914-4920 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Shan, K. Thanagaraj, M. Soong, L. T. Wolford, J. H. Boyer, I. R. Politzer, T. G. Pavlopoulos, “Pyrromethene-BF2 complexes as laser dyes. 1,” Heteroatom. Chem. 1, 389–399 (1990). [CrossRef]
  2. M. P. O’Neil, “Synchronously pumped visible laser dye with twice the efficiency of Rhodamine-6G,” Opt. Lett. 18, 37–38 (1993). [CrossRef]
  3. S. C. Guggenheimer, J. H. Boyer, K. Thanagaraj, M. Soong, M. Shan, T. G. Pavlopoulos, “Efficient laser action from two cw laser-pumped Pyrromethene–BF2 complexes,” Appl. Opt. 32, 3942–3943 (1993). [PubMed]
  4. T. G. Pavlopoulos, M. Shan, J. H. Boyer, “Efficient laser action from 1, 3, 5, 7, 8 pentamethyl Pyrromethene–BF2 complex and its disodium 2, 6-disulfonate derivative,” Opt. Commun. 70, 425–427 (1989). [CrossRef]
  5. T. G. Pavlopoulos, J. H. Boyer, M. Shan, K. Thanagaraj, M. Soong, “Laser action from 2, 6, 8-position trisubstituted 1, 3, 5-tetramethylpyrromethene–BF2 complexes,” Appl. Opt. 29, 3885–3886 (1990). [CrossRef] [PubMed]
  6. M. D. Rahn, T. A. King, A. A. Gorman, I. Hamblett, “Photostability enhancement of Pyrromethene-567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997). [CrossRef] [PubMed]
  7. M. Faloss, M. Canva, P. Georges, A. Brun, F. Chaput, J. P. Boilot, “Toward millions of laser pulses with Pyrromethene- and Perylene-doped xerogels,” Appl. Opt. 36, 6760–6763 (1997). [CrossRef]
  8. M. J. Cazeca, X. Jiang, J. Kumar, S. K. Tripathy, “Epoxy matrix for solid-state dye laser applications,” Appl. Opt. 36, 4965–4968 (1997). [CrossRef] [PubMed]
  9. M. Broyer, J. Chevaleyre, G. Delacretaz, L. Wöste, “CVL-pumped dye laser for spectroscopic application,” Appl. Phys. B 35, 31–36 (1984). [CrossRef]
  10. W. P. Partridge, N. M. Laurendeau, C. C. Johnson, R. N. Steppel, “Performance of Pyrromethene 580 and 597 in a commercial Nd:YAG-pumped dye-laser system,” Opt. Lett. 19, 1630–1632 (1994). [CrossRef] [PubMed]
  11. J. J. Kim, “Metal vapour lasers: a review of recent progress,” Opt. Quantum Electron. 23, S469–S476 (1991). [CrossRef]
  12. P. C. Beamont, D. G. Johnson, B. J. Parsons, “Photophysical properties of laser dyes: picosecond flash Rhodamine-6G, Rhodamine-B and Rhodamine-101,” J. Chem. Soc. Faraday Trans. 89, 4185–4191 (1993). [CrossRef]
  13. S. Gabay, P. Blau, M. Lando, I. Druckman, Z. Horvitz, Y. Yfrah, I. Hen, E. Miron, I. Smilanski, “Stabilization of high-power copper vapour laser,” Opt. Quantum Electron. 23, S485–S492 (1991). [CrossRef]
  14. V. E. Lippert, “Spektroskopische bestimmung des dipolomoments aromatischer verbindungen im ersten angeregten Singluettzustand,” Z. Electrochem. 61, 962–975 (1957).
  15. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983), Chap. 7. [CrossRef]
  16. J. A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1985), Chap. 3.
  17. S. J. Strickler, R. A. Berg, “Relationship between absorption intensity and fluorescence lifetime of molecules,” J. Chem. Phys. 37, 814–822 (1962). [CrossRef]
  18. S. Speiser, N. Shakkour, “Photoquenching parameters for commonly used laser dyes,” Appl. Phys. B 38, 191–197 (1985). [CrossRef]
  19. M. D. Rahn, T. A. King, “Comparison of laser performance of dye molecules in sol-gel, polycom, ormosil, and poly(methyl methacrylate) host media,” Appl. Opt. 34, 8260–8271 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited