OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 21 — Jul. 20, 1998
  • pp: 4951–4962

Disturbance of laser-induced-fluorescence measurements of NO in methane–air flames containing chlorinated species by photochemical effects induced by 225-nm-laser excitation

Pascale Desgroux, Pascal Devynck, Laurent Gasnot, Jean-François Pauwels, and Louis-René Sochet  »View Author Affiliations

Applied Optics, Vol. 37, Issue 21, pp. 4951-4962 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser-induced fluorescence measurements of NO in CH4–air flames seeded with CH3Cl and CH2Cl2 are described. The measurements are perturbed by strong photochemical effects characterized by UV emissions. The contribution of these background emissions is taken into account on the basis of an on-line–off-line resonance procedure. First results indicate an important increase of NO in the presence of chlorinated species. Background emissions observed in the range 220–260 nm and at 278 nm are ascribed, respectively, to electronically excited HCl and CCl photofragments. It is shown that C2H3Cl and CHCl2 species are responsible for the formation of HCl and CCl, respectively, and a photolytic mechanism for formation of the photofragments is proposed.

© 1998 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(260.5130) Physical optics : Photochemistry
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.2530) Spectroscopy : Fluorescence, laser-induced

Original Manuscript: August 1, 1997
Revised Manuscript: February 19, 1998
Published: July 20, 1998

Pascale Desgroux, Pascal Devynck, Laurent Gasnot, Jean-François Pauwels, and Louis-René Sochet, "Disturbance of laser-induced-fluorescence measurements of NO in methane–air flames containing chlorinated species by photochemical effects induced by 225-nm-laser excitation," Appl. Opt. 37, 4951-4962 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. P. Koshland, “Impacts and control of air toxics from combustion,” in Twenty-Sixth Symposium (International) on Combustion, A. R. Burgess, F. L. Dryer, eds. (Combustion Institute, Pittsburgh, Pa., 1996), pp. 2049–2065. [CrossRef]
  2. M. Kassem, M. Qun, S. M. Senkan, “Chemical structure of fuel-rich 1,2-C2H4Cl2/CH4/O2Ar flames: effects of micro-probe cooling on the sampling of flames of chlorinated hydrocarbons,” Combust. Sci. Technol. 67, 147–157 (1989). [CrossRef]
  3. M. J. Thomson, D. Lucas, C. P. Koshland, R. F. Sawyer, Y. P. Wu, J. W. Bozzelli, “An experimental and numerical study of the high-temperature oxydation of 1,1,1-C2H3Cl3,” Combust. Flame 98, 155–169 (1994). [CrossRef]
  4. I. A. Gargurevich, M. Castaldi, S. M. Senkan, “Chemical structures of fuel-rich, premixed, laminar flames of 1,1-C2H4Cl2/CH4/O2Ar,” Combust. Sci. Technol. 106, 69–82 (1995). [CrossRef]
  5. D. Surdyk, P. Devynck, B. Crunelle, A. Turbiez, P. Desgroux, J. F. Pauwels, L. R. Sochet, “The effects of CH3Cl and CH2Cl2 addition on a low-pressure stoichiometric CH4/O2/N2 premixed laminar flat flame: experimental and modeling studies,” presented at the Third International Conference on Combustion Technologies for a Clean Environment, Lisbon, Portugal, 6–9 July 1995.
  6. J. F. Roesler, R. A. Yetter, F. L. Dryer, “Kinetic interactions of CO, NOx and HCl emissions in postcombustion gases,” Combust. Flame 100, 495–504 (1995). [CrossRef]
  7. D. Lucas, C. P. Koshland, C. S. McEnally, R. F. Sawyer, “The detection of ethyl chloride using photofragmentation,” Combust. Sci. Technol. 85, 271–281 (1992). [CrossRef]
  8. J. B. Jeffries, G. A. Raiche, L. E. Jusinski, “Detection of chlorinated hydrocarbons via laser-atomization/laser-induced fluorescence,” Appl. Phys. B 55, 76–83 (1992). [CrossRef]
  9. C. P. Koshland, D. Lucas, B. S. Higgins, R. F. Sawyer, “Detection of chlorinated hydrocarbons in combustion using in situ FTIR spectroscopy,” in Twenty-Fourth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1992), pp. 1597–1604.
  10. S. Satyapal, J. H. Werner, T. A. Cool, “An extended flame zone in the combustion of CH3Cl,” Combust. Sci. Technol. 106, 229–238 (1995). [CrossRef]
  11. P. Desgroux, L. Gasnot, B. Crunelle, J. F. Pauwels, “CH3 detection in flames using photodissociation-induced fluorescence,” in Twenty-Sixth Symposium (International) on Combustion, A. R. Burgess, F. L. Dryer, eds. (Combustion Institute, Pittsburgh, Pa., 1996), pp. 967–974. [CrossRef]
  12. I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-induced fluorescence of O(3p3P), O2, and NO near 226 nm: photolytic interferences and simultaneous excitation in flames,” Opt. Lett. 14, 767–769 (1989). [CrossRef] [PubMed]
  13. C. D. Carter, R. S. Barlow, “Simultaneous measurements of Laser-induced NO and OH Fluorescence and Raman scattering in nonpremixed turbulent jet flames,” presented at the meeting of the Western States Section, Combustion Institute, Berkeley, Calif., 12–13 October 1992.
  14. J. R. Reisel, C. D. Carter, N. M. Laurendeau, M. C. Drake, “Laser-induced fluorescence measurements of nitric oxide in laminar, flat, C2H6/O2/N2 flames at atmospheric pressure,” Combust. Sci. Technol. 91, 271–295 (1993). [CrossRef]
  15. B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995). [CrossRef]
  16. A. O. Vyrodov, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A– X(0-0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995). [CrossRef]
  17. W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1996). [CrossRef]
  18. D. E. Heard, J. B. Jeffries, G. P. Smith, D. R. Crosley, “LIF measurements in methane–air flames of radicals important in prompt-NO formation,” Combust. Flame 88, 137–148 (1992). [CrossRef]
  19. L. Gasnot, P. Desgroux, J. F. Pauwels, L. R. Sochet, “Experimental and numerical studies of NO formation in a low-pressure CH4/O2/N2 flame by coupling gas chromatography and laser induced fluorescence,” presented at the joint meeting of the French and German Sections, Combustion Institute, Mulhouse, France, 11–13 October 1995.
  20. C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann–Runge systems,” J. Quant. Spectrosc. Radiat. Transfer 48, 9–24 (1992). [CrossRef]
  21. M. Tsujishita, A. Hirano, “Two-dimensional quenching lifetime measurement of OH: A2Σ+(v′ = 1) and NO:A2Σ(v′ = 0) in atmospheric-pressure flames,” Appl. Phys. B 62, 255–262 (1996). [CrossRef]
  22. R. D. Kenner, H. K. Haak, F. Stuhl, “Cl2 and HCl emissions in the ArF-laser photolyses of chlorinated compounds: identification and mechanism of generation,” J. Chem. Phys. 85, 1915–1923 (1986). [CrossRef]
  23. J. J. Tiee, F. B. Wampler, W. W. Rice, “UV laser photochemistry of CCl4 and CCl3F,” J. Chem. Phys. 72, 2925–2927 (1980). [CrossRef]
  24. M. Castillejo, J. M. Figuera, M. Martin, “Xenon halide exciplex formation by 193 nm laser multiphoton dissociation of vinyl halides in the presence of Xe,” Chem. Phys. Lett. 117, 181–184 (1985). [CrossRef]
  25. J. K. Jacques, R. F. Barrow, “The transition V1Σ+–X1Σ+ in hydrogen chloride,” Proc. Phys. Soc. 73, 538–539 (1959). [CrossRef]
  26. A. E. Douglas, F. R. Greening, “The electronic spectra of HCl and HF,” Can. J. Phys. 57, 1650–1661 (1979). [CrossRef]
  27. R. Callaghan, S. Arepalli, R. J. Gordon, “Resonantly enhanced two-photon spectroscopy of HCl and DCl in the 77 000–87 000 cm-1 region,” J. Chem. Phys. 86, 5273–5280 (1987). [CrossRef]
  28. B. A. Williams, T. A. Cool, “Resonance ionization spectroscopy of the chloroethylenes,” J. Phys. Chem. 97, 1270–1282 (1993). [CrossRef]
  29. D. S. Ginter, M. L. Ginter, “Electronic spectra and structure of the hydrogen halides: characterization of the electronic structure of HCl lying between 82 900 and 93 500 cm-1 above X1Σ+,” J. Mol. Spectrosc. 90, 177–196 (1981). [CrossRef]
  30. J. B. Nee, M. Suto, L. C. Lee, “Quantitative photoabsorption and fluorescence study of HCl in vacuum ultraviolet,” J. Chem. Phys. 85, 719–724 (1986). [CrossRef]
  31. P. Desgroux, L. Gasnot, J. F. Pauwels, L. R. Sochet, “A comparison of ESR and LIF hydroxil radical measurements in flame,” Combust. Sci. Technol. 100, 379–384 (1994). [CrossRef]
  32. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 71st ed. (CRC, Boca Raton, Fla.1991).
  33. M. J. Berry, “Chloroethylene photochemical lasers: vibrational energy content of the HCl molecular elimination products,” J. Chem. Phys. 61, 3114–3143 (1974). [CrossRef]
  34. Y. Mo, K. Tonokura, Y. Matsumi, M. Kawasaki, T. Sato, T. Arikawa, P. T. A. Reilly, Y. Xie, Y. Yang, Y. Huang, R. J. Gordon, “Mechanism of the ultraviolet photodissociation of chloroethylenes from the Doppler profiles, spatial anisotropy, and power dependence of the photofragments,” J. Chem. Phys. 97, 4815–4826 (1992). [CrossRef]
  35. P. T. A. Reilly, Y. Xie, R. J. Gordon, “Product state distribution in the photodissociation of vinyl chloride at 193 nm,” Chem. Phys. Lett. 178, 511–516 (1991). [CrossRef]
  36. M. G. Moss, M. D. Ensminger, J. D. McDonald, “Infrared emission spectroscopy of the products of UV-dissociated chloroethylenes,” J. Chem. Phys. 74, 6631–6635 (1981). [CrossRef]
  37. D. J. Donaldson, S. R. Leone, “Time-resolved FTIR photofragment emission spectroscopy: HCl vibrational distributions from the 193 nm photolysis of chloroethylenes,” Chem. Phys. Lett. 132, 240–246 (1986). [CrossRef]
  38. M. Umemoto, K. H. Shinohara, U. Nagashima, N. Nishi, M. Kinoshita, R. Shimada, “Photofragmentation of mono and dichloroethylenes: translational energy measurements of recoiling Cl and HCl fragments,” J. Chem. Phys. 83, 1657–1666 (1985). [CrossRef]
  39. K. Sato, Y. Shihira, S. Tsunashima, H. Umemoto, T. Takayanagi, K. Furukawa, S. Ohno, “The photodissociation dynamics of dichloroethylenes at 214 and 220 nm,” J. Chem. Phys. 99, 1703–1709 (1993). [CrossRef]
  40. G. Hertzberg, Molecular Spectra and Molecular Structure, 2nd ed. (Van Nostrand, New York, 1950), Vol. 1.
  41. P. B. Roussel, P. D. Lightfoot, F. Caralp, V. Catoire, R. Lesclaux, “Ultraviolet absorption spectra of the CH2Cl and CHCl2 radicals and kinetics of their self-recombination reactions from 273 to 686 K,” J. Chem. Soc. Faraday Trans. 87, 2367–2377 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited