OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 21 — Jul. 20, 1998
  • pp: 4963–4978

Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics

Mark C. Thurber, Frédéric Grisch, Brian J. Kirby, Martin Votsmeier, and Ronald K. Hanson  »View Author Affiliations

Applied Optics, Vol. 37, Issue 21, pp. 4963-4978 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent determinations of the temperature dependence of acetone fluorescence have permitted the application of acetone planar laser-induced fluorescence imaging, which was already popular for mapping concentration, to the measurement of temperature. With a view toward developing temperature-imaging diagnostics, we present atmospheric-pressure fluorescence and absorption results acquired with excitation at eight wavelengths across the absorption feature of acetone and at temperatures from 300 to 1000 K. Modeling of the fluorescence yield of acetone is shown to be useful in explaining both these results and the variation of acetone fluorescence with pressure and composition that was observed in several studies. The model results in conjunction with the photophysics data provide guidance for the application of temperature diagnostics over a range of conditions while also suggesting useful multiparameter imaging approaches.

© 1998 Optical Society of America

OCIS Codes
(260.2510) Physical optics : Fluorescence
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.2490) Remote sensing and sensors : Flow diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced

Original Manuscript: September 29, 1997
Revised Manuscript: March 31, 1998
Published: July 20, 1998

Mark C. Thurber, Frédéric Grisch, Brian J. Kirby, Martin Votsmeier, and Ronald K. Hanson, "Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics," Appl. Opt. 37, 4963-4978 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Lozano, B. Yip, R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992). [CrossRef]
  2. A. Lozano, S. H. Smith, M. G. Mungal, R. K. Hanson, “Concentration measurements in a transverse jet by planar laser-induced fluorescence of acetone,” AIAA J. 32, 218–221 (1993). [CrossRef]
  3. B. Yip, M. F. Miller, A. Lozano, R. K. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualized combusting flows,” Exp. Fluids 17, 330–336 (1994). [CrossRef]
  4. N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” in Twenty-Fourth Symposium (International) on Combustion, Sydney, Australia (Combustion Institute, Pittsburgh, Pa., 1992) pp. 1621–1628. [CrossRef]
  5. N. T. Clemens, P. H. Paul, “Effects of heat release on the near field flow structure of hydrogen jet diffusion flames,” Combust. Flame 102, 271–284 (1995). [CrossRef]
  6. D. Wolff, H. Schluter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993). [CrossRef]
  7. S. H. Smith, M. G. Mungal, “Mixing, structure and scaling of the jet in crossflow,” J. Fluid Mech. 357, 83–122 (1998). [CrossRef]
  8. J. B. Ghandhi, P. G. Felton, “On the fluorescence behavior of ketones at high temperatures,” Exp. Fluids 21, 143–144 (1996). [CrossRef]
  9. F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996). [CrossRef]
  10. F. Grisch, M. C. Thurber, R. K. Hanson, “Mesure de température par fluorescence induite par laser sur la molécule d’acétone,” Rev. Sci. Tech. Defense 4, 51–60 (1997).
  11. M. C. Thurber, F. Grisch, R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997). [CrossRef] [PubMed]
  12. L. S. Yuen, J. E. Peters, R. P. Lucht, “Pressure dependence of laser-induced fluorescence from acetone,” Appl. Opt. 36, 3271–3277 (1997). [CrossRef] [PubMed]
  13. F. Ossler, M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997). [CrossRef]
  14. A. J. Hynes, E. A. Kenyon, A. J. Pounds, P. H. Wine, “Temperature dependent absorption cross-sections for acetone and n-butanone—implications for atmospheric lifetimes,” Spectrochim. Acta A 48, 1235–1242 (1992). [CrossRef]
  15. M. Baba, I. Hanazaki, “The S1, 1A2(n, π*) state of the acetone in a supersonic nozzle beam: methyl internal rotation,” Chem. Phys. Lett. 103, 93–97 (1983). [CrossRef]
  16. H. Zuckermann, Y. Haas, M. Drabbels, J. Heinze, W. L. Meerts, J. Reuss, J. v. Bladel, “Acetone, a laser-induced fluorescence study with rotational resolution at 320 nm,” Chem. Phys. 163, 193–208 (1992). [CrossRef]
  17. A. Lozano, “Laser-excited luminescent tracers for planar concentration measurements in gaseous jets,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1992).
  18. D. A. Hansen, E. K. C. Lee, “Radiative and nonradiative transitions in the first excited singlet state of symmetrical methyl-substituted acetones,” J. Chem. Phys. 62, 183–189 (1975). [CrossRef]
  19. G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapor at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984). [CrossRef]
  20. R. A. Copeland, D. R. Crosley, “Radiative, collisional and dissociative processes in triplet acetone,” Chem. Phys. Lett. 115, 362–368 (1985). [CrossRef]
  21. A. Costela, M. T. Crespo, J. M. Figuera, “Laser photolysis of acetone at 308 nm,” J. Photochem. 34, 165–173 (1986). [CrossRef]
  22. M. J. G. Borge, J. M. Figuera, J. Luque, “Study of the emission of the excited acetone vapour at intermediate pressures,” Spectrochim. Acta A 46, 617–621 (1990). [CrossRef]
  23. J. Heicklen, “The fluorescence and phosphorescence of biacetyl vapor and acetone vapor,” J. Am. Chem. Soc. 81, 3863–3866 (1958). [CrossRef]
  24. A. M. Halpern, W. R. Ware, “Excited singlet state radiative and nonradiative transition probabilities for acetone, acetone-d6, and hexafluoreacetone in the gas phase, in solution, and in the neat liquid,” J. Chem. Phys. 54, 1271–1276 (1971). [CrossRef]
  25. J. Ernst, K. Spindler, H. G. Wagner, “Untersuchungen zum thermischen Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem. 80, 645–650 (1976). [CrossRef]
  26. J. C. Hsieh, E. C. Lim, “Internal conversion in isolated aromatic molecules,” J. Chem. Phys. 61, 736–737 (1974). [CrossRef]
  27. K. F. Freed, “Collisional effects on electronic relaxation processes,” in Potential Energy Surfaces, K. P. Lawley, ed. (Wiley, New York, 1980), pp. 207–269.
  28. R. G. Shortridge, C. F. Rusbult, E. K. C. Lee, “Fluorescence excitation study of cyclobutanone, cyclopentanone, and cyclohexanone in the gas phase,” J. Am. Chem. Soc. 93, 1863–1867 (1970).
  29. D. J. Wilson, B. Noble, B. Lee, “Pressure dependence of fluorescence spectra,” J. Chem. Phys. 34, 1392–1396 (1961). [CrossRef]
  30. G. B. Porter, B. T. Connelly, “Kinetics of excited molecules. II. Dissociation processes,” J. Chem. Phys. 33, 81–85 (1960). [CrossRef]
  31. G. H. Kohlmaier, B. S. Rabinovitch, “Collisional transition probabilities for vibrational deactivation of chemically actived sec-butyl radicals. The rare gases,” J. Chem. Phys. 38, 1692–1714 (1963). [CrossRef]
  32. A. N. Strachan, R. K. Boyd, K. O. Kutschke, “Multistage deactivation in the photolysis of hexafluoroacetone,” Can. J. Chem. 42, 1345–1354 (1963). [CrossRef]
  33. J. Troe, “Approximate expressions for the yields of unimolecular reactions with chemical and photochemical activation,” J. Phys. Chem. 87, 1800–1804 (1983). [CrossRef]
  34. E. K. C. Lee, R. S. Lewis, “Photochemistry of simple aldehydes and ketones in the gas phase,” Adv. Photochem. 12, 1–95 (1980). [CrossRef]
  35. H. Hippler, B. Otto, J. Troe, “Collisional energy transfer of vibrationally highly excited molecules. IV. Energy dependence of 〈ΔE〉 in azulene,” Ber. Bunsenges. Phys. Chem. 93, 428–434 (1989). [CrossRef]
  36. T. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Volume I, Natl. Stand. Ref. Data Ser. Natl. Bur. Stand.39, (1972).
  37. R. B. Cundall, A. S. Davies, “The mechanism of the gas phase photolysis of acetone,” Proc. Soc. London Ser. A 290, 563–582 (1966). [CrossRef]
  38. G. M. Breuer, E. K. C. Lee, “Fluorescence decay times of cyclic ketones, acetone, and butanal in the gas phase,” J. Phys. Chem. 75, 989–990 (1970). [CrossRef]
  39. M. J. Rossi, J. R. Pladziewicz, J. R. Barker, “Energy-dependent energy transfer: deactivation of azulene (S0, Evib) by 17 collider gases,” J. Chem. Phys. 78, 6695–6708 (1983). [CrossRef]
  40. H. Hippler, J. Troe, H. J. Wendelken, “Collision deactivation of vibrationally highly excited polyatomic molecules. II. Direct observations for excited toluene,” J. Chem. Phys. 78, 6709–6717 (1983). [CrossRef]
  41. H. Hippler, J. Troe, H. J. Wendelken, “Collisional deactivation of vibrationally highly excited polyatomic molecules. III. Direct observations for substituted cycloheptatrienes,” J. Chem. Phys. 78, 6718–6724 (1983). [CrossRef]
  42. W. M. Nau, J. C. Scaiano, “Oxygen quenching of excited aliphatic ketones and diketones,” J. Phys. Chem. 100, 11,360–11,367 (1996). [CrossRef]
  43. J. Troe, “Collisional deactivation of vibrationally highly excited polyatomic molecules. I. Theoretical analysis,” J. Chem. Phys. 77, 3485–3492 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited