OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 21 — Jul. 20, 1998
  • pp: 5019–5030

Anomalous diffraction theory for arbitrarily oriented finite circular cylinders and comparison with exact T-matrix results

Yangang Liu, W. Patrick Arnott, and John Hallett  »View Author Affiliations


Applied Optics, Vol. 37, Issue 21, pp. 5019-5030 (1998)
http://dx.doi.org/10.1364/AO.37.005019


View Full Text Article

Enhanced HTML    Acrobat PDF (431 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general method is developed to formulate extinction and absorption efficiency for nonspherical particles at arbitrary and random orientations by use of anomalous diffraction theory (ADT). An ADT for finite circular cylinders is evaluated as an example. Existing ADT’s for infinite cylinders at arbitrary orientations and for finite cylinders at the normal incidence are shown to be special cases of the new formulation. ADT solutions for finite cylinders are shown to approach the rigorous T-matrix results when the refractive indices approach unity. The importance of some physical processes that are neglected in the ADT approximation are evaluated by comparisons between ADT and rigorous calculations for different particle geometries. For spheres, van de Hulst’s ADT and Mie theory are used, whereas the ADT that we present and T-matrix calculations are used for cylinders of different diameter-to-length ratios. The results show that the differences in extinction between ADT and exact solutions generally decrease with nonsphericity. A similar decrease occurs for absorption at wavelengths of relatively strong absorption. The influence of complex refractive index is evaluated. Our results suggest that ADT may provide a useful approximation in parameterization and remote sensing of cirrus clouds in the Christiansen bands where the real part of the refractive index approaches unity and/or where relative absorption is strong.

© 1998 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(290.2200) Scattering : Extinction
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: December 23, 1997
Revised Manuscript: March 13, 1998
Published: July 20, 1998

Citation
Yangang Liu, W. Patrick Arnott, and John Hallett, "Anomalous diffraction theory for arbitrarily oriented finite circular cylinders and comparison with exact T-matrix results," Appl. Opt. 37, 5019-5030 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-21-5019


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Mitchell, W. P. Arnott, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology,” J. Atmos. Sci. 51, 817–832 (1994). [CrossRef]
  2. D. L. Mitchell, A. Macke, Y. Liu, “Modeling cirrus clouds. Part II: Treatment of radiative properties,” J. Atmos. Sci. 53, 2967–2988 (1996). [CrossRef]
  3. Q. Fu, K. N. Liou, “Parameterization of the radiative properties of cirrus clouds,” J. Atmos. Sci. 50, 2008–2025 (1993). [CrossRef]
  4. W. P. Arnott, C. Schmitt, Y. Liu, J. Hallett, “Droplet size spectra and water-vapor concentration of laboratory water clouds: inversion of Fourier transform infrared (500–5000 cm-1) optical-depth measurement,” Appl. Opt. 36, 5205–5216 (1997). [CrossRef] [PubMed]
  5. M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  6. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  7. P. W. Barber, H. Massoudi, “Recent advances in light scattering calculations for nonspherical particles,” Aerosol Sci. Technol. 1, 303–315 (1982). [CrossRef]
  8. M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. D102, 16831–16847 (1997). [CrossRef]
  9. S. Kinne, K. N. Liou, “The effects of the nonsphericity and size distribution of ice crystals on the radiative properties of cirrus clouds,” Atmos. Res. 24, 273–284 (1989). [CrossRef]
  10. P. Yang, K. N. Liou, W. P. Arnott, “Extinction efficiency and single-scattering albedo for laboratory and natural cirrus clouds,” J. Geophys. Res. D102, 21825–21835 (1997). [CrossRef]
  11. A. J. Baran, J. S. Foot, D. L. Mitchell, “Ice crystal absorption: a comparison between theory and implications for remote sensing,” Appl. Opt. 37, 2207–2215 (1998). [CrossRef]
  12. W. P. Arnott, Y. Liu, J. Hallett, “Unreasonable effectiveness of mimicking measured infrared extinction by hexagonal ice crystals with Mie ice spheres,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 Technical Digest Series (Optical Society of America, Washington, D.C., 1997), 216–218.
  13. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  14. G. L. Stephens, “Scattering of plane waves by soft obstacles: anomalous diffraction theory for circular cylinders,” Appl. Opt. 23, 954–959 (1984). [CrossRef] [PubMed]
  15. S. A. Ackerman, G. L. Stephens, “The absorption of solar radiation by cloud droplets: an application of anomalous diffraction theory,” J. Atmos. Sci. 44, 1574–1588 (1987). [CrossRef]
  16. G. R. Fournier, B. T. N. Evans, “Approximation to extinction efficiency for randomly oriented spheroids,” Appl. Opt. 30, 2042–2048 (1991). [CrossRef] [PubMed]
  17. B. T. N. Evans, G. R. Fournier, “Analytic approximation to randomly oriented spheroid extinction,” Appl. Opt. 33, 5796–5805 (1994). [CrossRef] [PubMed]
  18. J. M. Breenberg, A. S. Meltzer, “The effects of orientation of non-spherical particles on interstellar extinction,” Astrophys. J. 132, 667–671 (1960). [CrossRef]
  19. F. D. Bryant, P. Latimer, “Optical efficiencies of large particles of arbitrary shape and orientation,” J. Colloid Interface Sci. 30, 291–304 (1969). [CrossRef]
  20. D. A. Cross, P. Latimer, “General solutions for the extinction and absorption efficiencies of arbitrarily oriented cylinders by anomalous-diffraction methods,” J. Opt. Soc. Am. 60, 904–907 (1970). [CrossRef]
  21. P. Chylek, J. D. Klett, “Extinction cross sections of nonspherical particles in the anomalous diffraction approximation,” J. Opt. Soc. Am. A 8, 274–281 (1991). [CrossRef]
  22. P. Chylek, J. D. Klett, “Absorption and scattering of electromagnetic radiation by prismatic columns: anomalous diffraction approximation,” J. Opt. Soc. Am. A 8, 1713–1720 (1991). [CrossRef]
  23. A. Maslowska, P. J. Flatau, G. L. Stephens, “Scattering of light by cubes: anomalous diffraction and discrete dipole approximations,” IRS’ 92 Current Problems in Atmospheric Radiation, S. Keevallik, O. Kärner, eds. (Deepak, Hampton, Va., 1992), 533–535.
  24. P. Chylek, G. Videen, “Longwave radiative properties of polydispersed hexagonal ice crystals,” J. Atmos. Sci. 51, 175–190 (1994). [CrossRef]
  25. S. Asano, M. Sato, “Light scattering by randomly oriented spherical particles,” Appl. Opt. 19, 962–974 (1980). [CrossRef] [PubMed]
  26. A. Bowyer, J. Woodwark, A Programmer’s Geometry (Butterworth, London, 1983).
  27. R. L. Burden, J. D. Faires, Numerical Analysis (PWS-Kert, Boston, Mass., 1993).
  28. M. I. Mishchenko, L. D. Travis, A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996). [CrossRef] [PubMed]
  29. R. D. Haracz, L. D. Cohen, A. Cohen, “Scattering of linearly polarized light from randomly oriented cylinders and spheroids,” J. Appl. Phys. 58, 3322–3327 (1985). [CrossRef]
  30. P. C. Chylek, G. W. Grams, R. G. Pinnick, “Light scattering by irregular randomly oriented particles,” Science 193, 480–482 (1976). [CrossRef]
  31. S. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984). [CrossRef] [PubMed]
  32. S. C. Hill, B. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, P. K. Change, eds. (World Scientific, Singapore, 1988).
  33. L. G. Guimaraes, H. M. Nussenzveig, “Theory of Mie resonances and ripple fluctuations,” Opt. Commun. 89, 363–369 (1992). [CrossRef]
  34. S. A. Ackerman, “Remote sensing aerosols using satellite infrared observations,” J. Geophys. Res. D 102, 17069–17079 (1997). [CrossRef]
  35. H. M. Steele, R. P. Turco, “Retrieval of aerosol size distributions from satellite extinction spectra using constrained linear inversion,” J. Geophys. Res. D 102, 16737–16747 (1997). [CrossRef]
  36. W. P. Arnott, Y. Dong, J. Hallett, “Extinction efficiency in the infrared (2–18 μm) of laboratory ice clouds: observations of scattering minima in the Christiansen bands of ice,” Appl. Opt. 34, 541–551 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited