OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 22 — Aug. 1, 1998
  • pp: 5291–5297

Modeling the index of refraction of insulating solids with a modified lorentz oscillator model

Aleksandra B. Djurišić and E. Herbert Li  »View Author Affiliations


Applied Optics, Vol. 37, Issue 22, pp. 5291-5297 (1998)
http://dx.doi.org/10.1364/AO.37.005291


View Full Text Article

Enhanced HTML    Acrobat PDF (126 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A modification of the Lorentz oscillator model for optical constants is proposed in an effort to achieve better agreement with experimental data while keeping the calculation simple. Improvement in agreement between theoretical and experimental data obtained with a variable line shape (frequency-dependent damping constant) over a wide spectral range is demonstrated through modeling the index of refraction of Si3N4 (1–24 eV), SiO (0.15–25 eV) and amorphous and crystalline SiO2 (0.15–25 eV). Model parameters are estimated by acceptance-probability-controlled simulated annealing. Excellent agreement between the modified model and the experimental data is obtained for both real and imaginary parts of the index of refraction.

© 1998 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(120.5710) Instrumentation, measurement, and metrology : Refraction
(310.6860) Thin films : Thin films, optical properties

Citation
Aleksandra B. Djurišić and E. Herbert Li, "Modeling the index of refraction of insulating solids with a modified lorentz oscillator model," Appl. Opt. 37, 5291-5297 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-22-5291


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34, 4755–4767 (1995). [CrossRef] [PubMed]
  2. C. J. Powell, “Analysis of optical- and inelastic-electron-scattering data. II. Application to Al,” J. Opt. Soc. Am. 60, 78–93 (1970). [CrossRef]
  3. M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, D. E. Aspnes, “Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation,” J. Appl. Phys. 56, 2664–2671 (1984). [CrossRef]
  4. F. L. Terry, “A modified harmonic oscillator approximation scheme for the dielectric constants of AlxGa1-xAs,” J. Appl. Phys. 70, 409–417 (1991). [CrossRef]
  5. G. N. Maracas, C. H. Kuo, S. Anand, R. Droopad, “Temperature-dependent pseudodielectric functions of GaAs determined by spectroscopic ellipsometry,” J. Appl. Phys. 77, 1701–1704 (1995). [CrossRef]
  6. C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y.-C. Kao, B. Johs, J. A. Woollam, “Determination of AlAs optical constants by variable angle spectroscopic ellipsometry,” J. Appl. Phys. 77, 4677–4687 (1995). [CrossRef]
  7. M. Schubert, V. Gottschak, C. M. Herzinger, H. Yao, P. G. Snyder, J. A. Woollam, “Optical constants of GaxIn1-xP lattice matched to GaAs,” J. Appl. Phys. 77, 3416–3419 (1995). [CrossRef]
  8. C. M. Herzinger, P. G. Snyder, F. G. Celii, Y.-C. Kao, D. Chow, B. Johs, J. A. Woollam, “Studies of thin strained InAs, AlAs, and AlSb layers by spectroscopic ellipsometry,” J. Appl. Phys. 79, 2663–2674 (1996). [CrossRef]
  9. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983). [CrossRef] [PubMed]
  10. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, Mass., 1989).
  11. A. D. Rakić, J. M. Elazar, A. B. Djurišić.“Acceptance-probability-controlled simulated annealing: a method for modeling the optical constants of solids,” Phys. Rev. E 52, 6862–6867 (1995). [CrossRef]
  12. A. B. Djurišić, A. D. Rakić, J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797–4803 (1997). [CrossRef]
  13. A. B. Djurišić, J. M. Elazar, A. D. Rakić, “Modeling the optical constants of solids using genetic algorithms with parameter space size adjustment,” Opt. Commun. 134, 407–414.
  14. O. Stenzel, R. Petrich, W. Scharff, A. Tikhonravov, V. Hopfe, “A hybrid method for determination of optical thin film constants,” Thin Solid Films 207, 324–329 (1992). [CrossRef]
  15. A. Franke, A. Stendal, O. Stenzel, C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogenously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996). [CrossRef]
  16. C. C. Kim, J. W. Garland, H. Abad, P. M. Raccah, “Modeling the optical dielectric function of semiconductors: extension of critical-point parabolic-band approximation,” Phys. Rev. B 45, 11749–11767 (1992). [CrossRef]
  17. A. D. Rakić, M. L. Majewski, “Modeling the optical dielectric function of GaAs and AlAs: extension of Adachi’s model,” J. Appl. Phys. 80, 5509–5915 (1996).
  18. S. Ozaki, S. Adachi, “Spectroscopic ellipsometry and thermoreflectance of GaAs,” J. Appl. Phys. 78, 3380–3386 (1995). [CrossRef]
  19. A. K. Harman, S. Ninomiya, S. Adachi, “Optical constants of sapphire (α-Al2O3) single crystals,” J. Appl. Phys. 76, 8032–8036 (1994). [CrossRef]
  20. H. R. Philipp, “Silicon nitride (Si3N4) (noncrystalline),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 771–774.
  21. J. B. Theeten, D. E. Aspnes, F. Simondet, M. Erman, P. C. Mürau, “Nondestructive analysis of Si3N4/SiO2/Si structures using spectroscopic ellipsometry,” J. Appl. Phys. 52, 6788–6797 (1981). [CrossRef]
  22. H. R. Philipp, “Silicon monoxide (SiO) (noncrystalline),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 765–770.
  23. H. R. Philipp, “Silicon dioxide (SiO2) (glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 749–764.
  24. H. R. Philipp, “Silicon dioxide (SiO2) type α (crystalline),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 719–748.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited