OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 22 — Aug. 1, 1998
  • pp: 5337–5343

Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations

Huabei Jiang  »View Author Affiliations


Applied Optics, Vol. 37, Issue 22, pp. 5337-5343 (1998)
http://dx.doi.org/10.1364/AO.37.005337


View Full Text Article

Enhanced HTML    Acrobat PDF (219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a finite-element-based algorithm for reconstruction of fluorescence lifetime and yield in turbid media, using frequency-domain data. The algorithm is based on a set of coupled diffusion equations that describe the propagation of both excitation and fluorescent emission light in multiply scattering media. Centered on Newton’s iterative method, we implemented our algorithm by using a synthesized scheme of Marquardt and Tikhonov regularizations. A low-pass spatial filter is also incorporated into the algorithm for enhancing image reconstruction. Simulation studies using both noise-free and noisy data have been performed with the nonzero photon density boundary conditions. Our results suggest that quantitative images can be produced in terms of fluorescent lifetime and yield values and location, size, and shape of heterogeneities within a circular background region.

© 1998 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

History
Original Manuscript: January 5, 1998
Revised Manuscript: April 20, 1998
Published: August 1, 1998

Citation
Huabei Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-22-5337


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992). [CrossRef]
  2. Y. Yamishita, M. Kaneko, “Infrared diaphanoscopy for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. Van der Zee, eds. (SPIE Press, Bellingham, Wash., 1993), pp. 283–316.
  3. R. L. Barbour, H. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. Van der Zee, eds. (SPIE Press, Bellingham, Wash., 1993), pp. 87–120.
  4. J. C. Hebden, K. S. Wong, “Time-resolved optical tomography,” Appl. Opt. 32, 372–380 (1993). [CrossRef] [PubMed]
  5. R. Berg, S. Anderson-Engels, O. Jarlman, S. Svanberg, “Tumor detection using time-resolved light transillumination,” in Future Trends in Biomedical Applications of Lasers, L. O. Svaasand, ed., Proc. SPIE1525, 59–67 (1991). [CrossRef]
  6. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues—a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993). [CrossRef] [PubMed]
  7. E. Gratton, W. Mantulin, M. J. van de Ven, J. Fishkin, M. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993). [CrossRef]
  8. E. M. Sevick, J. K. Frisoli, C. L. Burch, J. R. Lakowicz, “Localization of absorbers in scattering media by use of frequency domain measurements of time-dependent photon migration,” Appl. Opt. 33, 3562–3570 (1994). [CrossRef] [PubMed]
  9. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995). [CrossRef] [PubMed]
  10. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of absorption and scattering maps in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995). [CrossRef] [PubMed]
  11. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissue in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990). [CrossRef] [PubMed]
  12. T. Troy, D. Page, E. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996). [CrossRef] [PubMed]
  13. B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. Gross, V. Venugopalan, D. Pham, “Noninvasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London B 352, 661–668 (1997). [CrossRef]
  14. R. Richards-Kortum, R. P. Rava, M. Fitzmaurice, L. L. Tong, N. Ratliff, J. Kramer, M. S. Feld, “A one layer model of laser-induced fluorescence for diagnosis of disease in human tissue: applications to atherosclerosis,” IEEE Trans. Biomed. Eng. 36, 1222–1232 (1989). [CrossRef] [PubMed]
  15. R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. Choy, E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. QE-23, 1806–1811 (1987). [CrossRef]
  16. E. S. Andersson, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the determination of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991).
  17. J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media,” Opt. Lett. 20, 489–491 (1995). [CrossRef] [PubMed]
  18. Y. Yang, “Fluorescence spectroscopy as a photonic pathology method for detecting colon cancer,” Lasers Life Sci. 6, 259–276 (1995).
  19. T. L. Troy, L. Nelson-Larry, C. L. Hutchinson, E. M. Sevick-Muraca, “Investigation of exogenous contrast agents for biomedical optical imaging,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 104–106.
  20. E. Sevick-Muraca, G. Lopez, T. Troy, J. Reynolds, C. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997). [CrossRef] [PubMed]
  21. S. Zhao, Y. Yang, S. Nioka, B. Chance, “Human breast tumor detection using contrast agent,” in Integration of Medical Optical Imaging and Spectroscopy and Magnetic Resonance Imaging Symposium Abstracts (University of Pennsylvania, Philadelphia, Pa., 1994).
  22. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983). [CrossRef]
  23. X. Li, M. O’Leary, D. Boas, B. Chance, A. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996). [CrossRef] [PubMed]
  24. A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues,” Appl. Opt. 36, 116–124 (1997). [CrossRef] [PubMed]
  25. E. M. Sevick-Muraca, C. L. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928–1930 (1994). [CrossRef] [PubMed]
  26. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994). [CrossRef] [PubMed]
  27. B. J. Tromberg, S. Madsen, C. Chapman, L. Svaasand, R. Haskell, “Fluorescence energy transfer studies on the macrophage scavenger receptor,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of 1994 OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), p. 93.
  28. A. J. Durkin, S. Jailkumar, R. Richards-Kortum, “Optically dilute, absorbing, and turbid phantoms for fluorescence spectroscopy of homogeneous and inhomogeneous samples,” Appl. Spectrosc. 47, 2114–2121 (1993). [CrossRef]
  29. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993). [CrossRef] [PubMed]
  30. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996). [CrossRef] [PubMed]
  31. J. Chang, H. L. Graber, R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997). [CrossRef]
  32. J. Chang, H. Graber, R. L. Barbour, “Imaging of fluorescence in highly scattering media,” IEEE Trans. Biomed. Eng. 44, 810–822 (1997). [CrossRef] [PubMed]
  33. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent lifetime and yield from multiple scattered light reemitted from tissues and other random media,” Appl. Opt. 36, 2260–2272 (1997). [CrossRef] [PubMed]
  34. K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–702 (1995). [CrossRef] [PubMed]
  35. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996). [CrossRef]
  36. K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total variation minimization,” Appl. Opt. 35, 3447–3458 (1996). [CrossRef] [PubMed]
  37. H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Frequency-domain optical image reconstruction in heterogeneous media: an experimental study of single-target detectability,” Appl. Opt. 36, 52–63 (1997). [CrossRef] [PubMed]
  38. H. Jiang, K. D. Paulsen, U. L. Osterberg, M. S. Patterson, “Frequency-domain optical image reconstruction for breast imaging: initial evaluation in multitarget tissuelike phantoms,” Med. Phys. 25, 183–193 (1998). [CrossRef] [PubMed]
  39. S. R. Arridge, M. Schweijer, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med Phys. 20, 299–308 (1993). [CrossRef] [PubMed]
  40. M. Schweijer, S. R. Arridge, “Direct calculation with a finite-element method of the Laplace transform of the distribution of photon time of flight in tissue,” Appl. Opt. 36, 9042–9049 (1997). [CrossRef]
  41. S. Takahashi, D. Imai, Y. Yamada, “Fundamental 3D FEM analysis of light propagation in head model toward 3D optical tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human Studies II, B. Chance, R. Alfano, eds., Proc. SPIE2979, 130–138 (1997). [CrossRef]
  42. Y. Yamada, Y. Hasegawa, “Time-dependent FEM analysis of photon migration in random media,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human Studies, B. Chance, R. Alfano, eds., Proc. SPIE1888, 167–178 (1993).
  43. R. C. Haskell, L. O. Svaasand, T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  44. H. Jiang, “Reconstructed near infrared diffusion imaging for breast cancer detection,” Ph.D. dissertation (Dartmouth College, Hanover, N.H., 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited