OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 23 — Aug. 10, 1998
  • pp: 5431–5443

Experimental evaluation of user capacity in holographic data-storage systems

Geoffrey W. Burr, Wu-chun Chou, Mark A. Neifeld, Hans Coufal, John A. Hoffnagle, and C. Michael Jefferson  »View Author Affiliations

Applied Optics, Vol. 37, Issue 23, pp. 5431-5443 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (178 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An experimental procedure for determining the relation between the number of stored holograms and the raw bit-error rate (BER) (the BER before error correction) of a holographic storage system is described. Compared with conventional recording schedules that equalize the diffraction efficiency, scheduling of recording exposures to achieve a uniform raw BER is shown to improve capacity. The experimentally obtained capacity versus the raw-BER scaling is used to study the effects of modulation and error-correction coding in holographic storage. The use of coding is shown to increase the number of holograms that can be stored; however, the redundancy associated with coding incurs a capacity cost per hologram. This trade-off is quantified, and an optimal working point for the overall system is identified. This procedure makes it possible to compare, under realistic conditions, system choices whose impact cannot be fully analyzed or simulated. Using LiNbO3 in the 90° geometry, we implement this capacity-estimation procedure and compare several block-based modulation codes and thresholding techniques on the basis of total user capacity.

© 1998 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(050.7330) Diffraction and gratings : Volume gratings
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(210.2860) Optical data storage : Holographic and volume memories

Original Manuscript: February 24, 1998
Revised Manuscript: May 18, 1998
Published: August 10, 1998

Geoffrey W. Burr, Wu-chun Chou, Mark A. Neifeld, Hans Coufal, John A. Hoffnagle, and C. Michael Jefferson, "Experimental evaluation of user capacity in holographic data-storage systems," Appl. Opt. 37, 5431-5443 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273 (5), 70–76 (1995). [CrossRef]
  2. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994). [CrossRef] [PubMed]
  3. M. A. Neifeld, M. McDonald, “Error correction for increasing the usable capacity of photorefractive memories,” Opt. Lett. 19, 1483–1485 (1994). [CrossRef] [PubMed]
  4. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639–641 (1997). [CrossRef] [PubMed]
  5. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Channel codes for digital holographic data storage,” J. Opt. Soc. Am. A 12, 2432–2439 (1995). [CrossRef]
  6. C. Gu, J. Hong, I. McMichael, R. Saxena, F. Mok, “Cross-talk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1–6 (1993).
  7. C. Gu, F. Dai, J. Hong, “Statistics of both optical and electrical noise in digital volume holographic data storage,” Electron. Lett. 32, 1400–1402 (1996). [CrossRef]
  8. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988). [CrossRef]
  9. F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996). [CrossRef] [PubMed]
  10. S. Campbell, S.-H. Lin, X. Yi, P. Yeh, “Absorption effects in photorefractive volume-holographic memory systems. I. Beam depletion,” J. Opt. Soc. Am. B 13, 2209–2217 (1996). [CrossRef]
  11. G. W. Burr, “Volume holographic storage using the 90° geometry,” Ph.D. thesis (California Institute of Technology, Pasadena, California, 1996).
  12. M.-P. Bernal, G. W. Burr, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, R. M. Shelby, M. Quintanilla, “Experimental study of the effects of a six-level phase mask on a digital holographic storage system,” Appl. Opt. 37, 2094–2101 (1998). [CrossRef]
  13. I. S. Reed, G. Solomon, “Polynomial codes over certain finite fields,” J. Soc. Indust. Appl. Math. 8, 300–304 (1960). [CrossRef]
  14. M. M. Wang, S. C. Esener, F. B. McCormick, I. Cokgor, A. S. Dvornikov, P. M. Rentzepis, “Experimental characterization of a two-photon memory,” Opt. Lett. 22, 558–560 (1997). [CrossRef] [PubMed]
  15. X. A. Shen, A.-D. Nguyen, J. W. Perry, D. L. Huestis, R. Kachru, “Time-domain holographic digital memory,” Science 278, 96–100 (1997). [CrossRef]
  16. A. Pu, D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996). [CrossRef] [PubMed]
  17. G. W. Burr, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, “Noise reduction for page-oriented data storage by inverse filtering during recording,” Opt. Lett. 23, 289–291 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited