OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 23 — Aug. 10, 1998
  • pp: 5444–5453

Nonseparable two-dimensional fractional Fourier transform

Aysegul Sahin, M. Alper Kutay, and Haldun M. Ozaktas  »View Author Affiliations


Applied Optics, Vol. 37, Issue 23, pp. 5444-5453 (1998)
http://dx.doi.org/10.1364/AO.37.005444


View Full Text Article

Enhanced HTML    Acrobat PDF (590 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Previous generalizations of the fractional Fourier transform to two dimensions assumed separable kernels. We present a nonseparable definition for the two-dimensional fractional Fourier transform that includes the separable definition as a special case. Its digital and optical implementations are presented. The usefulness of the nonseparable transform is justified with an image-restoration example.

© 1998 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(100.0100) Image processing : Image processing
(100.3020) Image processing : Image reconstruction-restoration

History
Original Manuscript: December 4, 1997
Revised Manuscript: May 12, 1998
Published: August 10, 1998

Citation
Aysegul Sahin, M. Alper Kutay, and Haldun M. Ozaktas, "Nonseparable two-dimensional fractional Fourier transform," Appl. Opt. 37, 5444-5453 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-23-5444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. McBride, F. H. Kerr, “On Namias’s fractional Fourier transform,” IMA J. Appl. Math. 39, 159–175 (1987). [CrossRef]
  2. H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994). [CrossRef]
  3. H. M. Ozaktas, D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993). [CrossRef]
  4. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional order Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993). [CrossRef]
  5. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993). [CrossRef]
  6. D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993). [CrossRef]
  7. A. W. Lohmann, B. H. Soffer, “Relationships between the Radon–Wigner and fractional Fourier transforms,” J. Opt. Soc. Am. A 11, 1798–1801 (1994). [CrossRef]
  8. L. B. Almeida, “The fractional Fourier transform and time–frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994). [CrossRef]
  9. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995). [CrossRef]
  10. P. Pellat-Finet, G. Bonnet, “Fractional order Fourier transform and Fourier optics,” Opt. Commun. 111, 141–154 (1994). [CrossRef]
  11. L. M. Bernardo, O. D. D. Soares, “Fractional Fourier transforms and optical systems,” Opt. Commun. 110, 517–522 (1994). [CrossRef]
  12. M. F. Erden, H. M. Ozaktas, A. Sahin, D. Mendlovic, “Design of dynamically adjustable fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997). [CrossRef]
  13. D. Mendlovic, Y. Bitran, C. Ferreira, J. Garcia, H. M. Ozaktas, “Anamorphic fractional Fourier transforming–optical implementation and applications,” Appl. Opt. 34, 7451–7456 (1995). [CrossRef] [PubMed]
  14. A. Sahin, H. M. Ozaktas, D. Mendlovic, “Optical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions,” Opt. Commun. 120, 134–138 (1995). [CrossRef]
  15. P. Pellat-Finet, “Fresnel diffraction and the fractional-order Fourier transform,” Opt. Lett. 19, 1388–1390 (1994). [CrossRef] [PubMed]
  16. L. M. Bernardo, O. D. D. Soares, “Fractional Fourier transforms and imaging,” J. Opt. Soc. Am. A 11, 2622–2626 (1994). [CrossRef]
  17. T. Alieva, V. Lopez, F. Agullo-Lopez, L. B. Almedia, “The fractional Fourier transform in optical propagation problems,” J. Mod. Opt. 41, 1037–1044 (1994). [CrossRef]
  18. D. Mendlovic, Z. Zalevsky, N. Konforti, R. G. Dorsch, A. W. Lohmann, “Incoherent fractional Fourier transform and its optical implementation,” Appl. Opt. 34, 7615–7620 (1995). [CrossRef] [PubMed]
  19. R. G. Dorsch, “Fractional Fourier transformer of variable order based on a modular lens system,” Appl. Opt. 34, 6016–6020 (1995). [CrossRef] [PubMed]
  20. A. W. Lohmann, “A fake zoom lens for fractional Fourier experiments,” Opt. Commun. 115, 437–443 (1995). [CrossRef]
  21. C. C. Shih, “Optical interpretation of a complex-order Fourier transform,” Opt. Lett. 20, 1178–1180 (1995). [CrossRef] [PubMed]
  22. R. G. Dorsh, A. W. Lohmann, Y. Bitran, D. Mendlovic, H. M. Ozaktas, “Chirp filtering in the fractional Fourier domain,” Appl. Opt. 33, 7599–7602 (1994). [CrossRef]
  23. Y. B. Karasik, “Expression of the kernel of a fractional Fourier transform in elementary functions,” Opt. Lett. 19, 769–770 (1994). [CrossRef] [PubMed]
  24. A. Sahin, “Two-dimensional fractional Fourier transform and its optical implementation,” M.S. thesis (Bilkent University, Ankara, Turkey, 1996).
  25. A. Sahin, H. Ozaktas, D. Mendlovic, “Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters,” Appl. Opt. 37, 2130–2141 (1998). [CrossRef]
  26. R. N. Bracewell, K. Y. Champ, A. K. Jha, Y. H. Wang, “Affine theorem for two dimensional Fourier transform,” Electron. Lett. 29, 304–309 (1993). [CrossRef]
  27. M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979). [CrossRef]
  28. G. B. Folland, Harmonic Analysis in Phase Space (Princeton U. Press, Princeton, N.J., 1989)
  29. H. M. Ozaktas, O. Arikan, M. A. Kutay, G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996). [CrossRef]
  30. J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice-Hall, Englewood Cliffs, N.J., 1990.)
  31. Tanju Erdem. Bilkent University, Department of Electrical Engineering, 06533, Bilkent, Ankara, Turkey. (Personal communication.)
  32. M. A. Kutay, H. M. Ozaktas, O. Arikan, L. Onural, “Optimal filtering in Fractional Fourier domains,” IEEE Trans. Signal Process. 45, 1129–1143 (1997). [CrossRef]
  33. M. F. Erden, H. M. Ozaktas, D. Mendlovic, “Synthesis of mutual intensity distributions using the fractional Fourier transform,” Opt. Commun. 125, 288–301 (1996). [CrossRef]
  34. A. W. Lohmann, Z. Zalevsky, D. Mendlovic, “Synthesis of pattern recognition filters for fractional Fourier processing,” Opt. Commun. 128, 199–204 (1996). [CrossRef]
  35. Z. Zalevsky, D. Mendlovic, “Fractional Wiener filter,” Appl. Opt. 35, 3930–3936 (1996). [CrossRef] [PubMed]
  36. B. Barshan, M. A. Kutay, H. M. Ozaktas, “Optimal filtering with linear canonical transformations,” Opt. Commun. 135, 32–36 (1997). [CrossRef]
  37. H. M. Ozaktas, “Repeated fractional Fourier domain filtering is equivalent to repeated time and frequency domain filtering,” Signal Process. 54, 81–84 (1996). [CrossRef]
  38. H. M. Ozaktas, D. Mendlovic, “Every Fourier optical system is equivalent to consecutive fractional Fourier domain filtering,” Appl. Opt. 35, 3167–3170 (1996). [CrossRef] [PubMed]
  39. M. A. Kutay, H. M. Ozaktas, “Optimal image restoration with the fractional Fourier transform,” J. Opt. Soc. Am. A 15, 825–833 (1998). [CrossRef]
  40. L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited