OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 23 — Aug. 10, 1998
  • pp: 5479–5487

Compact polarization-based all-optical interconnection systems with growth capability

Nadav Cohen, David Mendlovic, Bruce Leibner, and Naim Konforti  »View Author Affiliations


Applied Optics, Vol. 37, Issue 23, pp. 5479-5487 (1998)
http://dx.doi.org/10.1364/AO.37.005479


View Full Text Article

Enhanced HTML    Acrobat PDF (260 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

All-optical communication requires all-optical interconnections, thus leading to reliable, fast, and flexible modular communication means in future systems. Free-space approaches are advantageous since they fully use the two dimensions optics offer. A folded architecture based on a polarization code is proposed for dynamic optical interconnection. The suggested systems are compact and appropriate for both intracomputer and intercomputer communication. The modularity of the proposed architecture is presented, and a growth rule for the fully connected versions of the system is introduced. The proposed approach significantly reduces both the price of the interconnection systems and their complexity. Presented are 4 × 4 and 8 × 8 fully connected switches, a rearrangeable nonblocking 4 × 4 switch, and a crossbar architecture.

© 1998 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(200.4650) Optics in computing : Optical interconnects

History
Original Manuscript: August 21, 1997
Revised Manuscript: February 25, 1998
Published: August 10, 1998

Citation
Nadav Cohen, David Mendlovic, Bruce Leibner, and Naim Konforti, "Compact polarization-based all-optical interconnection systems with growth capability," Appl. Opt. 37, 5479-5487 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-23-5479


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Hogari, T. Matsumoto, “Electrostatically driven micromechanical 2 by 2 optical switch,” Appl. Opt. 30, 1253–1257 (1991). [CrossRef] [PubMed]
  2. J. Shamir, H. J. Caulfield, W. Miceli, R. J. Seymour, “Optical computing and the Fredkin gate,” Appl. Opt. 25, 1604–1607 (1986). [CrossRef] [PubMed]
  3. T. Huang, Y. H. Chen, “Optical switches with a substrate-mode grating structure,” Optik (Stuttgart) 98, 1–4 (1994).
  4. R. K. Kostuk, M. Kato, Y.-T. Huang, “Polarization properties of substrate-mode holographic interconnects,” Appl. Opt. 29, 3848–3854 (1990). [CrossRef] [PubMed]
  5. J.-T. Chang, D.-C. Su, Y.-T. Huang, “Substrate mode holographic polarization division multi/demultiplexer for optical communications,” Appl. Opt. 33, 8143–8145 (1994). [CrossRef] [PubMed]
  6. K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates,” Appl. Opt. 27, 1727–1733 (1988). [CrossRef] [PubMed]
  7. H. Yamazaki, S. Fukushima, “Holographic switch with a ferroelectric liquid-crystal spatial light modulator for a large-scale switch,” Appl. Opt. 35, 8137–8143 (1995). [CrossRef]
  8. N. Wang, L. Liu, Y. Yin, “Cantor network, control algorithm, two-dimensional compact structure and its optical implementation,” Appl. Opt. 34, 8176–8182 (1995). [CrossRef] [PubMed]
  9. D. M. Marom, D. Mendlovic, “Compact, all-optical bypass–exchange switch,” Appl. Opt. 35, 248–253 (1996). [CrossRef] [PubMed]
  10. M. Hossain, S. Ghanta, M. Guizani, “Optical realization of a Clos nonblocking broadcast switching network with constant time network control algorithms,” Appl. Opt. 32, 665–673 (1993). [CrossRef] [PubMed]
  11. B. Acklin, J. Jahns, “Packing considerations for planar optical interconnection systems,” Appl. Opt. 33, 1391–1397 (1994). [CrossRef] [PubMed]
  12. K. Noguchi, K. Hogori, T. Sakano, T. Matsumoto, “Rearrangable multichannel free-space optical switching using a polarization multiplexing technique,” Electron. Lett. 26, 1325–1326 (1990). [CrossRef]
  13. K. Hogari, K. Noguchi, T. Matsumoto, “Two-dimensional multichannel optical switch,” Appl. Opt. 30, 3277–3278 (1991). [CrossRef] [PubMed]
  14. L. R. McAdams, R. N. McRuer, J. W. Goodman, “Liquid crystal optical routing switch,” Appl. Opt. 29, 1304–1307 (1990). [CrossRef] [PubMed]
  15. J. E. Midwinter, Photonics in Switching (Academic, New York, 1993), Vols. 1 and 2.
  16. A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, A. Varma, “Optical crossbar network,” Computer 20, 50 (1987). [CrossRef]
  17. Y. Wu, L. Liu, Z. Wang, “Optical crossbar elements used for switching networks,” Appl. Opt. 33, 175–178 (1994). [CrossRef] [PubMed]
  18. D. M. Marom, D. Mendlovic, “All-optical reduced state 4 by 4 switch,” Opt. Photon. News 7(2), 43 (1996).
  19. K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystals,” Appl. Opt. 27, 1727–1733 (1988). [CrossRef]
  20. J. E. Ford, F. Xu, K. Urquhartand, Y. Fainman, “Polarization-selective computer-generated holograms,” Opt. Lett. 19, 456–458 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited