OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 24 — Aug. 20, 1998
  • pp: 5509–5521

Compact Airborne Lidar for Tropospheric Ozone: Description and Field Measurements

Gérard Ancellet and Fraņois Ravetta  »View Author Affiliations

Applied Optics, Vol. 37, Issue 24, pp. 5509-5521 (1998)

View Full Text Article

Acrobat PDF (1282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An airborne lidar has been developed for tropospheric ozone monitoring. The transmitter module is based on a solid-state Nd:YAG laser and stimulated Raman scattering in deuterium to generate three wavelengths (266, 289, and 316 nm) that are used for differential ozone measurements. Both analog and photon-counting detection methods are used to produce a measurement range up to 8 km. The system has been flown on the French Fokker 27 aircraft to perform both lower tropospheric (0.5–4-km) and upper tropospheric (4–12-km) measurements, with a 1-min temporal resolution corresponding to a 5-km spatial resolution. The vertical resolution of the ozone profile can vary from 300 to 1000 m to accommodate either a large-altitude range or optimum ozone accuracy. Comparisons with in situ ozone measurements performed by an aircraft UV photometer or ozone sondes and with ozone vertical profiles obtained by a ground-based lidar are presented. The accuracy of the tropospheric ozone measurements is generally better than 10–15%, except when aerosol interferences cannot be corrected. Examples of ozone profiles for different atmospheric conditions demonstrate the utility of the airborne lidar in the study of dynamic or photochemical mesoscale processes that control tropospheric ozone.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(140.3530) Lasers and laser optics : Lasers, neodymium
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar

Gérard Ancellet and Fraņois Ravetta, "Compact Airborne Lidar for Tropospheric Ozone: Description and Field Measurements," Appl. Opt. 37, 5509-5521 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. Pelon and G. Mégie, “Ozone monitoring in the troposphere and lower stratosphere: evaluation and operation of a ground-based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
  2. G. Mégie, G. Ancellet, and J. Pelon, “Lidar measurements of ozone vertical profiles,” Appl. Opt. 24, 3454–3463 (1985).
  3. G. Ancellet, A. Papayannis, J. Pelon, and G. Megie, “DIAL tropospheric ozone measurement using a Nd:YAG laser and the Raman shifting technique,” J. Atmos. Ocean. Technol. 6, 832–839 (1989).
  4. S. Godin, G. Megie, and J. Pelon, “Systematic lidar measurements of the stratospheric ozone vertical distribution,” Geophys. Res. Lett. 16, 547–550 (1989).
  5. G. Ancellet and M. Beekmann, “Evidence for changes in the ozone concentration in the free troposphere over Southern Europe from 1976–1995,” Atmos. Environ. 31, 2835–2851 (1997).
  6. E. Browell, A. Carter, S. Shipley, R. Allen, C. Butler, M. Mayo, J. Siviter, Jr., and W. Hall, “NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles,” Appl. Opt. 22, 522–534 (1983).
  7. E. Browell, M. Fenn, C. Butler, W. Grant, J. Merrill, R. Newell, J. Bradshaw, S. Sandholm, B. Anderson, A. Randy, A. Bachmeier, D. Blake, D. Davis, G. Gregory, B. Heikes, Y. Kondo, S. Liu, F. Rowland, G. Sachse, H. Singh, R. Talbot, and D. Thornton, “Large-scale air mass characteristics observed over Western Pacific during summertime,” J. Geophys. Res. 101, 1691–1712 (1996).
  8. E. Browell, M. Fenn, C. Butler, W. Grant, M. Clayton, J. Fishman, A. Bachmeier, B. Anderson, G. Gregory, H. Fuelberg, J. Bradshaw, S. Sandholm, D. Blake, B. Heikes, G. Sachse, H. Singh, and R. Talbot, “Ozone and aerosol distributions and air mass characteristics over the South Atlantic basin during the burning season,” J. Geophys. Res. 101,24, 043–24,068 (1996).
  9. E. Uthe, J. Livingston, and N. Nielsen, “Airborne lidar mapping of ozone concentrations during the Lake Michigan ozone study,” J. Air Waste Manage. Assoc. 42, 1313–1318 (1992).
  10. R. Alvarez II, S. Mayor, C. Senff, R. Hardesty, C. Frush, R. Banta, and W. Eberhard, “The UV-DIAL ozone measurements during the 1995 southern oxidants study,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 351–354.
  11. A. Papayannis, G. Ancellet, J. Pelon, and G. Megie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
  12. J. Bösenberg, G. Ancellet, R. Barbini, and M. Milton, “Tropospheric environmental studies by laser sounding (TESLAS),” in Instrument Development for Atmospheric Research and Monitoring, J. Bösenberg, D. Brassington, and P. Simon, eds. (Springer-Verlag, Berlin, 1997), pp. 1–204.
  13. M. Profitt and A. Langford, “Ground-based differential absorption lidar system for day and night measurements of ozone throughout the free troposphere,” Appl. Opt. 36, 2568–2585 (1997).
  14. O. Uchino, M. Totunaga, M. Maeda, and Y. Miyazoe, “Differential absorption lidar measurements for tropospheric ozone with excimer Raman-hybrid lasers,” Opt. Lett. 8, 347–349 (1983).
  15. E. Browell, S. Ismail, and S. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985).
  16. A. D’Altorio, F. Masci, V. Rizi, G. Visconti, and E. Boschi, “Continuous lidar measurements of stratospheric aerosols and ozone after the Pinatubo eruption. I. DIAL ozone retrieval in presence of stratospheric aerosol layers,” Geophys. Res. Lett. 20, 2865–2868 (1993).
  17. V. Kovalev and J. McElroy, “Differential absorption lidar measurement of vertical ozone profiles in the troposphere that contains aerosol layers with strong backscattering gradients: a simplified version,” Appl. Opt. 33, 8393–8401 (1994).
  18. L. Schoulepnikoff, V. Simeonov, H. van den Bergh, B. Calpini, D. Jeker, and V. Mitev, “Characterization of Raman cell-based transmitters for UV,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 387–390.
  19. A. Papayannis, G. Ancellet, J. Conrad, C. Laqui, and J. Pelon, “Active optoelectronic system for stabilizing pulsed lasers output energy at the 4th harmonic frequency,” Rev. Sci. Instrum. 64, 612–617 (1993).
  20. A. Luches, V. Nassisi, and M. Perrone, “Improved conversion efficiency of XeCl radiation to the first Stokes at high pump energy,” Appl. Phys. B 47, 101–105 (1988).
  21. D. Diebel, M. Bristow, and R. Zimmermann, “Stokes shifted laser lines in KrF-pumped hydrogen: reduction of beam divergence by addition of helium,” Appl. Opt. 30, 626–628 (1991).
  22. H. S. Lee, G. Schwemmer, C. Korb, M. Dombrowski, and C. Prasad, “Gated photomultiplier response characterization for DIAL measurements,” Appl. Opt. 29, 3303–3315 (1990).
  23. D. Donovan, J. Whiteway, and A. Carswell, “Correction for nonlinear photon-counting effects in lidar systems,” Appl. Opt. 32, 6742–6753 (1993).
  24. Y. Sasano and E. Browell, “Light scattering characteristics of various aerosols types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989).
  25. A. Chedin, N. Scott, C. Wahiche, and P. Moulinier, “The improved initialisation inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Clim. Appl. Meteorol. 24, 128–143 (1985).
  26. L. Molina and M. Molina, “Absolute absorption cross section of ozone in the 185 to 350 nm wavelength range,” J. Geophys. Res. 91, 14,501–14,508 (1986).
  27. O. Thomsen, P. Bisling, C. Weitkamp, and W. Michaelis, “Measurement of the sulphur dioxide absorption cross section in the solar-blind ultraviolet,” in Proceedings of Eurotrac Symposium 90, P. Borrell, ed. (SPB Academic, The Hague, 1991), pp. 463–464.
  28. D. Brassington, “Sulfur dioxide absorption cross-section measurements,” Appl. Opt. 20, 3774–3779 (1981).
  29. A. Bass, A. Ledford, and A. Laufer, “Extinction coefficients of NO2 and N2O4,” J. Res. Natl. Bur. Stand. Sect. A 80, 143–166 (1976).
  30. A. Bass, L. Glasgow, C. Miller, J. Jesson, and D. Filkin, “Temperature dependent absorption cross sections for formaldehyde (CH2O): the effect of formaldehyde on stratospheric chlorine chemistry,” Planet. Space Sci. 28, 675–679 (1980).
  31. M. Cann, J. Shinn, and R. Nicholls, “Oxygen absorption in the spectral range 180–300 nm for temperatures to 3000 K and pressures to 50 atm,” Can. J. Phys. 62, 1738–1751 (1984).
  32. V. Matthias, V. Wulfmeyer, and J. Bosenberg, “Comparison of retrieval methods in tropospheric ozone DIAL: the impact of Raman measurements,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, ed. (Springer-Verlag, Berlin, 1997), pp. 403–406.
  33. T. Halldorsson and J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
  34. E. Shettle and R. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Tech. Rep. 214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  35. D. D. Muer, H. D. Backer, and P. V. Haver, “Trend analysis of 25 years of regular ozone soundings at Uccle (Belgium),” in Proceedings of Eurotrac Symposium 94, P. Borrell, ed. (SPB Academic, The Hague, 1994), pp. 330–334.
  36. J. Logan, “Trends in the vertical distribution of ozone: an analysis of ozonesonde data,” J. Geophys. Res. 99, 25,553–25,585 (1994).
  37. M. Beekmann, G. Ancellet, D. Martin, C. Abonnel, G. Duverneuil, F. Eideliman, P. Bessemoulin, N. Fritz, and E. Gizard, “Intercomparison of tropospheric ozone profiles obtained by electrochemical sondes, a ground-based lidar and an airborne UV-photometer,” Atmos. Environ. 29, 1027–1042 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited