OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 24 — Aug. 20, 1998
  • pp: 5509–5521

Compact airborne lidar for tropospheric ozone: description and field measurements

Gérard Ancellet and François Ravetta  »View Author Affiliations


Applied Optics, Vol. 37, Issue 24, pp. 5509-5521 (1998)
http://dx.doi.org/10.1364/AO.37.005509


View Full Text Article

Enhanced HTML    Acrobat PDF (1282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An airborne lidar has been developed for tropospheric ozone monitoring. The transmitter module is based on a solid-state Nd:YAG laser and stimulated Raman scattering in deuterium to generate three wavelengths (266, 289, and 316 nm) that are used for differential ozone measurements. Both analog and photon-counting detection methods are used to produce a measurement range up to 8 km. The system has been flown on the French Fokker 27 aircraft to perform both lower tropospheric (0.5–4-km) and upper tropospheric (4–12-km) measurements, with a 1-min temporal resolution corresponding to a 5-km spatial resolution. The vertical resolution of the ozone profile can vary from 300 to 1000 m to accommodate either a large-altitude range or optimum ozone accuracy. Comparisons with in situ ozone measurements performed by an aircraft UV photometer or ozone sondes and with ozone vertical profiles obtained by a ground-based lidar are presented. The accuracy of the tropospheric ozone measurements is generally better than 10–15%, except when aerosol interferences cannot be corrected. Examples of ozone profiles for different atmospheric conditions demonstrate the utility of the airborne lidar in the study of dynamic or photochemical mesoscale processes that control tropospheric ozone.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(140.3530) Lasers and laser optics : Lasers, neodymium
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: March 9, 1998
Published: August 20, 1998

Citation
Gérard Ancellet and François Ravetta, "Compact airborne lidar for tropospheric ozone: description and field measurements," Appl. Opt. 37, 5509-5521 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-24-5509

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited