OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 24 — Aug. 20, 1998
  • pp: 5541–5549

Satellite-sensor calibration verification with the cloud-shadow method

Phillip N. Reinersman, Kendall L. Carder, and Feng-I R. Chen  »View Author Affiliations

Applied Optics, Vol. 37, Issue 24, pp. 5541-5549 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An atmospheric-correction method appropriate for high-spatial-resolution sensors that uses cloud-shaded pixels together with pixels in a neighboring region of similar optical properties is described. This cloud-shadow method uses the difference between the total radiance values observed at the sensor for these two regions, thus removing the nearly identical atmospheric radiance contributions to the two signals (e.g., path radiance and Fresnel-reflected skylight). What remains is largely due to solar photons backscattered from beneath the sea to dominate the residual signal. Normalization by the direct solar irradiance reaching the sea surface and correction for some second-order effects provides the remote-sensing reflectance of the ocean at the location of the neighbor region, providing a known ground target spectrum for use in testing the calibration of the sensor.A similar approach may be useful for land targets if horizontal homogeneity of scene reflectance exists about the shadow. Monte Carlo calculations have been used to correct for adjacency effects and to estimate the differences in the skylight reaching the shadowed and neighbor pixels.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.1310) Remote sensing and sensors : Atmospheric scattering

Original Manuscript: July 21, 1997
Revised Manuscript: May 4, 1998
Published: August 20, 1998

Phillip N. Reinersman, Kendall L. Carder, and Feng-I R. Chen, "Satellite-sensor calibration verification with the cloud-shadow method," Appl. Opt. 37, 5541-5549 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981). [CrossRef] [PubMed]
  2. H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the oceans in the visible,” Remote Sensing Environ. 22, 103–126 (1987). [CrossRef]
  3. W. A. Hovis, J. S. Knoll, G. R. Smith, “Aircraft measurements for calibration of an orbiting spacecraft sensor,” Appl. Opt. 24, 407–410 (1985). [CrossRef] [PubMed]
  4. H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983). [CrossRef]
  5. K. L. Carder, P. Reinersman, R. G. Steward, R. F. Chen, F. Muller-Karger, C. O. Davis, M. Hamilton, “AVIRIS calibration and application in coastal oceanic environments,” Remote Sensing Environ. 44, 205–216 (1993). [CrossRef]
  6. R. O. Green, T. G. Chrien, P. J. Nielson, C. M. Sarture, B. T. Eng, C. Chovit, A. T. Murray, M. L. Eastwood, H. I. Novack, “Airborne visible/infrared imaging spectrometer (AVIRIS): recent improvements to the sensor and data facility,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 180–190 (1993). [CrossRef]
  7. H. Gordon, D. Clark, J. Brown, O. Brown, R. Evans, W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983). [CrossRef] [PubMed]
  8. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983). [CrossRef] [PubMed]
  9. D. Tanre, M. Herman, P. Dechamps, “Influence of the background contribution upon space measurements of ground reflectance,” Appl. Opt. 20, 3676–3684 (1981). [CrossRef] [PubMed]
  10. F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “User’s guide to LOWTRAN-7,” Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  11. P. N. Reinersman, K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34, 4453–4471 (1995). [CrossRef] [PubMed]
  12. L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km,” Rep. AFCRL-68-0153 (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1968).
  13. W. Gregg, K. Carder, “A simple spectral solar irradiance model for cloudless maritime atmosphere,” Limnol. Oceanogr. 35, 1657–1675 (1990). [CrossRef]
  14. S. Sathyendranath, T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: a model for applications in oceanography and remote sensing,” J. Geophys. Res. 93, 9270–9280 (1988). [CrossRef]
  15. H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 A.,” Sol. Phys. 90, 205–258 (1984). [CrossRef]
  16. C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]
  17. C. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, T. G. Floppini, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993). [CrossRef] [PubMed]
  18. H. R. Gordon, “Ship perturbation of irradiance measurements at sea. 1: Monte Carlo simulations,” Appl. Opt. 24, 4172–4182 (1985). [CrossRef] [PubMed]
  19. J. Li, D. J. W. Geldart, P. Chylek, “Solar radiative transfer in clouds with vertical internal inhomogeneity,” J. Atmos. Sci. 51, 2542–2552 (1994). [CrossRef]
  20. H. W. Barker, “Solar radiative transfer for wind-sheared cumulus cloud fields,” J. Atmos. Sci. 51, 1141–1156 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited