OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 24 — Aug. 20, 1998
  • pp: 5550–5559

Lidar In-space Technology Experiment measurements of sea surface directional reflectance and the link to surface wind speed

Robert T. Menzies, David M. Tratt, and William H. Hunt  »View Author Affiliations

Applied Optics, Vol. 37, Issue 24, pp. 5550-5559 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (217 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dependence of sea surface directional reflectance on surface wind stress suggests a method for deriving surface wind speed from space-based lidar measurements of sea surface backscatter. In particular, lidar measurements in the nadir angle range from 10° to 30° appear to be most sensitive to surface wind-speed variability in the regime below 10 m/s. The Lidar In-space Technology Experiment (LITE) shuttle lidar mission of September 1994 provided a unique opportunity to measure directional backscatter at selected locations by use of the landmark track maneuver and to measure fixed-angle backscatter from the ocean surfaces on a global scale. During the landmark track maneuver the shuttle orbiter orientation and roll axis are adjusted continuously to maintain the lidar footprint at a fixed location for a duration of ∼1 min. Several data sets were converted to calibrated reflectance units and compared with a surface reflectance model to deduce surface wind speeds. Comparisons were made with ERS-1 scatterometer data and surface measurements.

© 1998 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.3640) Remote sensing and sensors : Lidar
(290.1350) Scattering : Backscattering

Original Manuscript: November 25, 1997
Revised Manuscript: April 10, 1998
Published: August 20, 1998

Robert T. Menzies, David M. Tratt, and William H. Hunt, "Lidar In-space Technology Experiment measurements of sea surface directional reflectance and the link to surface wind speed," Appl. Opt. 37, 5550-5559 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Cox, W. Munk, “Measurement of the roughness of the sea surface from photography of the Sun’s glitter,” J. Opt Soc. Am. 44, 838–850 (1954). [CrossRef]
  2. C. Cox, “Measurements of the slopes of high frequency wind waves,” J. Marine Res. 16, 199–225 (1958).
  3. C. Cox, W. Munk, “Statistics of the sea surface derived from Sun glitter,” J. Marine Res. 13, 198–227 (1954).
  4. J. Wu, “Sea-surface slope and equilibrium wind-wave spectra,” Phys. Fluids 13, 741–747 (1972). [CrossRef]
  5. P. Koepke, “Effective reflectance of oceanic whitecaps,” Appl. Opt. 23, 1816–1824 (1984). [CrossRef] [PubMed]
  6. C. H. Whitlock, D. S. Bartlett, E. A. Gurganus, “Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols,” Geophys. Res. Lett. 9, 719–722 (1982). [CrossRef]
  7. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  8. A. Morel, “In-water and remote measurements of ocean color,” Boundary-Layer Meteorol. 18, 177–201 (1980). [CrossRef]
  9. H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: a Review (Springer-Verlag, New York, 1983). [CrossRef]
  10. K. Masuda, T. Takashima, Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sensing Environ. 24, 313–329 (1988). [CrossRef]
  11. J. Otterman, J. Susskind, G. Dalu, D. Kratz, I. L. Goldberg, “Effects of water emission anisotropy on multispectral remote sensing at thermal wavelengths of ocean temperature and of cirrus clouds,” Appl. Opt. 31, 7633–7646 (1992). [CrossRef] [PubMed]
  12. X. Wu, W. L. Smith, “Emissivity of rough sea surface for 8–13 μm: modeling and verification,” Appl. Opt. 36, 2609–2619 (1997). [CrossRef] [PubMed]
  13. R. M. Huffaker, T. R. Lawrence, M. J. Post, J. T. Priestley, F. F. Hall, R. A. Richter, R. J. Keeler, “Feasibility studies for a global wind measuring satellite system (Windsat): analysis of simulated performance,” Appl. Opt. 23, 2523–2536 (1984). [CrossRef] [PubMed]
  14. R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989). [CrossRef]
  15. W. E. Baker, G. D. Emmitt, F. Robertson, R. M. Atlas, J. E. Molinari, D. A. Bowdle, J. Paegle, R. M. Hardesty, R. T. Menzies, T. N. Krishnamurti, R. A. Brown, M. J. Post, J. R. Anderson, A. C. Lorenc, J. McElroy, “Lidar-measured winds from space: a key component for weather and climate prediction,” Bull. Am. Meteorol. Soc. 76, 869–888 (1995). [CrossRef]
  16. S. P. Palm, S. H. Melfi, D. L. Carter, “New airborne scanning lidar system: applications for atmospheric remote sensing,” Appl. Opt. 33, 5674–5681 (1994). [CrossRef] [PubMed]
  17. K. J. Petri, “Laser radar reflectance of Chesapeake Bay waters as a function of wind speed,” IEEE Trans. Geosci. Electron. GE-15, 87–97 (1977). [CrossRef]
  18. J. L. Bufton, F. E. Hoge, R. N. Swift, “Airborne measurements of laser backscatter from the ocean surface,” Appl. Opt. 22, 2603–2618 (1983). [CrossRef] [PubMed]
  19. M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Platt, D. A. Randall, J. A. Reagan, “Scientific investigations planned for the lidar in-space technology experiment (LITE),” Bull. Am. Meteorol. Soc. 74, 205–214 (1993). [CrossRef]
  20. D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s lidar in-space technology experiment,” Proc. IEEE 84, 1–17 (1996). [CrossRef]
  21. O. M. Phillips, The Dynamics of the Upper Ocean, 2nd ed. (Cambridge U. Press, London, 1977).
  22. M. A. Donelan, W. J. Pierson, “Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry,” J. Geophys. Res. 92, 4971–5029 (1987). [CrossRef]
  23. R. Kodis, “A note on the theory of scattering from an irregular surface,” IEEE Trans. Antennas Propag. AP-14, 77–82 (1966). [CrossRef]
  24. D. E. Barrick, “Rough surface scattering based on the specular point theory,” IEEE Trans. Antennas Propag. AP-16, 449–454 (1968). [CrossRef]
  25. B. M. Tsai, C. S. Gardner, “Remote sensing of sea state using laser altimeters,” Appl. Opt. 21, 3932–3940 (1982). [CrossRef] [PubMed]
  26. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  27. D. Friedman, “Infrared characteristics of ocean water (1.5–15 μ),” Appl. Opt. 8, 2073–2078 (1969). [CrossRef] [PubMed]
  28. P. A. Hwang, O. H. Shemdin, “The dependence of sea surface slope on atmospheric stability and swell conditions,” J. Geophys. Res. 93, 13,903–13,912 (1988). [CrossRef]
  29. J. A. Shaw, J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt. 36, 4202–4213 (1997). [CrossRef] [PubMed]
  30. R. W. Preisendorfer, C. D. Mobley, “Albedos and glitter patterns of a wind-roughened sea surface,” J. Phys. Oceanogr. 16, 1293–1316 (1986). [CrossRef]
  31. F. E. Hoge, W. B. Krabill, R. M. Swift, “The reflection of airborne UV laser pulses from the ocean,” Marine Geod. 8, 313–344 (1984). [CrossRef]
  32. J. A. Weinman, “Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar,” Appl. Opt. 27, 3994–4001 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited